Transcutaneous spinal direct current stimulation (tsDCS) is a new promising technique for modulating spinal cord function in humans. However, its effects on corticospinal pathways and lower motorneuron excitability are poorly understood. We studied the effects of tsDCS on motor unit recruitment by evaluating changes in motor unit number (MUNE) and peripheral silent period (PSP) after sham (s-tsDCS), anodal (a-tsDCS) and cathodal (c-tsDCS) tsDCS applied either over the cervical or the lower thoracic spinal cord in healthy subjects. For the calculation of MUNE we used the multipoint incremental technique recording from either the ulnar nerve innervated abductor digiti minimi (ADM) or the median nerve innervated abductor pollicis brevis (APB) muscle. c-tsDCS dramatically increases MUNE values following cervical polarization, while sham and anodal polarization have no significant effect (APB: F(4,99)=26.4, p<0.001, two-way repeated measures ANOVA with "time" and "stimulation" as factors; ADM: F(4,99)=22.1, p<0.0001). At the same time, c-tsDCS dampened PSP respect to sham and anodal conditions (p<0.0001). Interestingly, also thoracic c-tsDCS significantly improved motor unit recruitment compared with both s-tsDCS and a-tsDCS (APB: F(4,99)=20.1, p<0.0001; ADM: F(4,99)=16.6, p<0.0001). Our data in healthy subjects suggest that tsDCS, possibly also through supraspinal effects, could provide a novel therapeutic tool in managing several pathological conditions characterized by reduced motor unit recruitment, such as stroke and spinal cord injuries. © 2014 Elsevier Ireland Ltd.

Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects / T. Bocci, B. Vannini, A. Torzini, A. Mazzatenta, M. Vergari, F. Cogiamanian, A. Priori, F. Sartucci. - In: NEUROSCIENCE LETTERS. - ISSN 0304-3940. - 578(2014 Aug 22), pp. 75-79.

Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects

T. Bocci;F. Cogiamanian;A. Priori
Penultimo
;
2014

Abstract

Transcutaneous spinal direct current stimulation (tsDCS) is a new promising technique for modulating spinal cord function in humans. However, its effects on corticospinal pathways and lower motorneuron excitability are poorly understood. We studied the effects of tsDCS on motor unit recruitment by evaluating changes in motor unit number (MUNE) and peripheral silent period (PSP) after sham (s-tsDCS), anodal (a-tsDCS) and cathodal (c-tsDCS) tsDCS applied either over the cervical or the lower thoracic spinal cord in healthy subjects. For the calculation of MUNE we used the multipoint incremental technique recording from either the ulnar nerve innervated abductor digiti minimi (ADM) or the median nerve innervated abductor pollicis brevis (APB) muscle. c-tsDCS dramatically increases MUNE values following cervical polarization, while sham and anodal polarization have no significant effect (APB: F(4,99)=26.4, p<0.001, two-way repeated measures ANOVA with "time" and "stimulation" as factors; ADM: F(4,99)=22.1, p<0.0001). At the same time, c-tsDCS dampened PSP respect to sham and anodal conditions (p<0.0001). Interestingly, also thoracic c-tsDCS significantly improved motor unit recruitment compared with both s-tsDCS and a-tsDCS (APB: F(4,99)=20.1, p<0.0001; ADM: F(4,99)=16.6, p<0.0001). Our data in healthy subjects suggest that tsDCS, possibly also through supraspinal effects, could provide a novel therapeutic tool in managing several pathological conditions characterized by reduced motor unit recruitment, such as stroke and spinal cord injuries. © 2014 Elsevier Ireland Ltd.
Motor system; Motor unit number estimation; Motor unit recruitment; Motorneuron excitability; Transcutaneous spinal direct current stimulation; TsDCS; Neuroscience (all)
Settore MED/26 - Neurologia
Settore BIO/09 - Fisiologia
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bocci_2014.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 817.16 kB
Formato Adobe PDF
817.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/252247
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 51
social impact