Adams' inequality is an extension of the Trudinger-Moser inequality to the case when the Sobolev space considered has more than one derivative. The goal of this paper is to give the optimal growth rate of the exponential-type function in Adams' inequality when the problem is considered in the whole space ℝ4.

Adams' Inequality with the Exact Growth Condition in ℝ4 / N. Masmoudi, F. Sani. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 67:8(2014), pp. 1307-1335. [10.1002/cpa.21473]

Adams' Inequality with the Exact Growth Condition in ℝ4

F. Sani
Ultimo
2014

Abstract

Adams' inequality is an extension of the Trudinger-Moser inequality to the case when the Sobolev space considered has more than one derivative. The goal of this paper is to give the optimal growth rate of the exponential-type function in Adams' inequality when the problem is considered in the whole space ℝ4.
Mathematics (all); Applied Mathematics
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/251108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 39
social impact