We prove that the set of all support points of a nonempty closed convex bounded set C in a real infinite-dimensional Banach space X is AR(σ-compact) and contractible. Under suitable conditions, similar results are proved also for the set of all support functionals ofC and for the domain, the graph, and the range of the subdifferential map of a proper convex lower semicontinuous function on X.

Higher connectedness properties of support points and functionals of convex sets / C. A. De Bernardi. - In: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES. - ISSN 0008-414X. - 65:6(2013), pp. 1236-1254.

Higher connectedness properties of support points and functionals of convex sets

C. A. De Bernardi
2013

Abstract

We prove that the set of all support points of a nonempty closed convex bounded set C in a real infinite-dimensional Banach space X is AR(σ-compact) and contractible. Under suitable conditions, similar results are proved also for the set of all support functionals ofC and for the domain, the graph, and the range of the subdifferential map of a proper convex lower semicontinuous function on X.
Absolute retract; Convex set; Leray-Schauder continuation principle; Support functional; Support point; Mathematics (all)
Settore MAT/05 - Analisi Matematica
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
debernardiJ0810.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 345.44 kB
Formato Adobe PDF
345.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/251011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact