In this article we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either PSL(2, p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves.

Beauville surfaces, moduli spaces and finite groups / S. Garion, M. Penegini. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - 42:5(2014), pp. 2126-2155.

Beauville surfaces, moduli spaces and finite groups

M. Penegini
Ultimo
2014

Abstract

In this article we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either PSL(2, p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves.
Beauville surfaces; Finite groups; Moduli spaces; Surface of general type
Settore MAT/03 - Geometria
Article (author)
File in questo prodotto:
File Dimensione Formato  
00927872%2E2012%2E758265.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 288.34 kB
Formato Adobe PDF
288.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/250855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 6
social impact