We compute the two-point correlation function for spin configurations which are obtained by solving the Euclidean matching problem, for one family of points on a grid and the second family chosen uniformly at random, when the cost depends on a power p of the Euclidean distance. We provide the analytic solution in the thermodynamic limit, in a number of cases (p > 1 open b.c. and p = 2 periodic b.c., both at criticality) and analyse numerically other parts of the phase diagram.
Correlation function for the Grid-Poisson Euclidean matching on a line and on a circle / E. Boniolo, S. Caracciolo, A. Sportiello. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2014:11(2014), pp. P11023.1-P11023.27.
Titolo: | Correlation function for the Grid-Poisson Euclidean matching on a line and on a circle |
Autori: | CARACCIOLO, SERGIO (Secondo) SPORTIELLO, ANDREA (Ultimo) |
Parole Chiave: | exact results; optimization under uncertainty |
Settore Scientifico Disciplinare: | Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici |
Data di pubblicazione: | 2014 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1088/1742-5468/2014/11/P11023 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
marriage1d_v4_AS.pdf | Post-print, accepted manuscript ecc. (versione accettata dall'editore) | Administrator Richiedi una copia |