We reconsider the Schröder-Siegel problem of conjugating an analytic map in {Mathematical expression} in the neighborhood of a fixed point to its linear part, extending it to the case of dimension {Mathematical expression}. Assuming a condition which is equivalent to Bruno's one on the eigenvalues {Mathematical expression} of the linear part, we show that the convergence radius {Mathematical expression} of the conjugating transformation satisfies {Mathematical expression} with {Mathematical expression} characterizing the eigenvalues {Mathematical expression}, a constant {Mathematical expression} not depending on {Mathematical expression} and {Mathematical expression}. This improves the previous results for {Mathematical expression}, where the known proofs give {Mathematical expression}. We also recall that {Mathematical expression} is known to be the optimal value for {Mathematical expression}.

Improved convergence estimates for the Schröder-Siegel problem / A. Giorgilli, U. Locatelli, M. Sansottera. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 194:4(2015), pp. 1-19. [Epub ahead of print] [10.1007/s10231-014-0408-4]

Improved convergence estimates for the Schröder-Siegel problem

A. Giorgilli
Primo
;
M. Sansottera
2015

Abstract

We reconsider the Schröder-Siegel problem of conjugating an analytic map in {Mathematical expression} in the neighborhood of a fixed point to its linear part, extending it to the case of dimension {Mathematical expression}. Assuming a condition which is equivalent to Bruno's one on the eigenvalues {Mathematical expression} of the linear part, we show that the convergence radius {Mathematical expression} of the conjugating transformation satisfies {Mathematical expression} with {Mathematical expression} characterizing the eigenvalues {Mathematical expression}, a constant {Mathematical expression} not depending on {Mathematical expression} and {Mathematical expression}. This improves the previous results for {Mathematical expression}, where the known proofs give {Mathematical expression}. We also recall that {Mathematical expression} is known to be the optimal value for {Mathematical expression}.
Diophantine conditions; Linearization; Normal forms; Small divisors; Applied Mathematics
Settore MAT/07 - Fisica Matematica
Settore MAT/05 - Analisi Matematica
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
siegel_lie.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 241.13 kB
Formato Adobe PDF
241.13 kB Adobe PDF Visualizza/Apri
AMPA_GLS.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 287.45 kB
Formato Adobe PDF
287.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/250185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact