We reconsider the Schröder-Siegel problem of conjugating an analytic map in {Mathematical expression} in the neighborhood of a fixed point to its linear part, extending it to the case of dimension {Mathematical expression}. Assuming a condition which is equivalent to Bruno's one on the eigenvalues {Mathematical expression} of the linear part, we show that the convergence radius {Mathematical expression} of the conjugating transformation satisfies {Mathematical expression} with {Mathematical expression} characterizing the eigenvalues {Mathematical expression}, a constant {Mathematical expression} not depending on {Mathematical expression} and {Mathematical expression}. This improves the previous results for {Mathematical expression}, where the known proofs give {Mathematical expression}. We also recall that {Mathematical expression} is known to be the optimal value for {Mathematical expression}.
Improved convergence estimates for the Schröder-Siegel problem / A. Giorgilli, U. Locatelli, M. Sansottera. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 194:4(2015), pp. 1-19. [Epub ahead of print] [10.1007/s10231-014-0408-4]
Improved convergence estimates for the Schröder-Siegel problem
A. GiorgilliPrimo
;M. Sansottera
2015
Abstract
We reconsider the Schröder-Siegel problem of conjugating an analytic map in {Mathematical expression} in the neighborhood of a fixed point to its linear part, extending it to the case of dimension {Mathematical expression}. Assuming a condition which is equivalent to Bruno's one on the eigenvalues {Mathematical expression} of the linear part, we show that the convergence radius {Mathematical expression} of the conjugating transformation satisfies {Mathematical expression} with {Mathematical expression} characterizing the eigenvalues {Mathematical expression}, a constant {Mathematical expression} not depending on {Mathematical expression} and {Mathematical expression}. This improves the previous results for {Mathematical expression}, where the known proofs give {Mathematical expression}. We also recall that {Mathematical expression} is known to be the optimal value for {Mathematical expression}.File | Dimensione | Formato | |
---|---|---|---|
siegel_lie.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
241.13 kB
Formato
Adobe PDF
|
241.13 kB | Adobe PDF | Visualizza/Apri |
AMPA_GLS.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
287.45 kB
Formato
Adobe PDF
|
287.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.