A determinantal identity (spectral duality) and Jensen's theorem imply a formula for the exponents of a single generic transfer matrix in terms of the spectrum of the corresponding Hamiltonian matrix, with non Hermitian boundary conditions. Applications to Anderson model and BRM are presented.

Non-Hermitian spectra and Anderson localization / L.G. Molinari. ((Intervento presentato al 4. convegno BRUNEL Workshop on Random Matrix Theory tenutosi a London nel 2008.

Non-Hermitian spectra and Anderson localization

L.G. Molinari
Primo
2008

Abstract

A determinantal identity (spectral duality) and Jensen's theorem imply a formula for the exponents of a single generic transfer matrix in terms of the spectrum of the corresponding Hamiltonian matrix, with non Hermitian boundary conditions. Applications to Anderson model and BRM are presented.
Anderson localisation; Lyapunov spectrum; block tridiagonal matrix
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
http://www.brunel.ac.uk/__data/assets/pdf_file/0016/7513/ranwshop08molinari.pdf
Non-Hermitian spectra and Anderson localization / L.G. Molinari. ((Intervento presentato al 4. convegno BRUNEL Workshop on Random Matrix Theory tenutosi a London nel 2008.
Conference Object
File in questo prodotto:
File Dimensione Formato  
brunel2008.pdf

accesso aperto

Descrizione: Slides
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 888.6 kB
Formato Adobe PDF
888.6 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/250096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact