Given a double-well potential F, a Z(n)-periodic function H, small and with zero average, and epsilon > 0, we find a large R, a small delta and a function H (epsilon) which is epsilon-close to H for which the following two problems have solutions: 1. Find a set E (epsilon) ,R whose boundary is uniformly close to a, B (R) and has mean curvature equal to -H (epsilon) at any point, 2. Find u = u (epsilon) ,R,delta solving -delta Delta u + F'(u)/delta + c(0)/2 H(epsilon) = 0, such that u (epsilon,R,delta) goes from a delta-neighborhood of + 1 in B (R) to a delta-neighborhood of -1 outside B (R) .

Bump solutions for the mesoscopic Allen-Cahn equation in periodic media / M. Novaga, E. Valdinoci. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 40:1-2(2011 Jan), pp. 37-49.

Bump solutions for the mesoscopic Allen-Cahn equation in periodic media

E. Valdinoci
Ultimo
2011-01

Abstract

Given a double-well potential F, a Z(n)-periodic function H, small and with zero average, and epsilon > 0, we find a large R, a small delta and a function H (epsilon) which is epsilon-close to H for which the following two problems have solutions: 1. Find a set E (epsilon) ,R whose boundary is uniformly close to a, B (R) and has mean curvature equal to -H (epsilon) at any point, 2. Find u = u (epsilon) ,R,delta solving -delta Delta u + F'(u)/delta + c(0)/2 H(epsilon) = 0, such that u (epsilon,R,delta) goes from a delta-neighborhood of + 1 in B (R) to a delta-neighborhood of -1 outside B (R) .
mixed states; interfaces
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs00526-010-0332-4.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 270.18 kB
Formato Adobe PDF
270.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/248025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact