Loss-of-function alleles of AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) revealed that these two similar MADS box genes have opposite functions in controlling the floral transition in Arabidopsis thaliana, with AGL24 functioning as a promoter and SVP as a repressor. AGL24 promotes inflorescence identity, and its expression is downregulated by APETALA1 (AP1) and LEAFY to establish floral meristem identity. Here, we combine the two mutants to generate the agl24 svp double mutant. Analysis of flowering time revealed that svp is epistatic to agl24. Furthermore, when grown at 30 degrees C, the double mutant was severely affected in flower development. All four floral whorls showed homeotic conversions due to ectopic expression of class B and C organ identity genes. The observed phenotypes remarkably resembled the leunig ( lug) and seuss (seu) mutants. Protein interaction studies showed that dimers composed of AP1-AGL24 and AP1-SVP interact with the LUG-SEU corepressor complex. We provide genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced. Our data suggest that MADS box proteins are involved in the recruitment of the SEU-LUG repressor complex for the regulation of AGAMOUS.
AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis / V. Gregis, A.D.A. Sessa, L. Colombo, M. Kater. - In: PLANT CELL. - ISSN 1040-4651. - 18:6(2006), pp. 1373-1382.
AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis
V. GregisPrimo
;A.D.A. SessaSecondo
;L. ColomboPenultimo
;M. KaterUltimo
2006
Abstract
Loss-of-function alleles of AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) revealed that these two similar MADS box genes have opposite functions in controlling the floral transition in Arabidopsis thaliana, with AGL24 functioning as a promoter and SVP as a repressor. AGL24 promotes inflorescence identity, and its expression is downregulated by APETALA1 (AP1) and LEAFY to establish floral meristem identity. Here, we combine the two mutants to generate the agl24 svp double mutant. Analysis of flowering time revealed that svp is epistatic to agl24. Furthermore, when grown at 30 degrees C, the double mutant was severely affected in flower development. All four floral whorls showed homeotic conversions due to ectopic expression of class B and C organ identity genes. The observed phenotypes remarkably resembled the leunig ( lug) and seuss (seu) mutants. Protein interaction studies showed that dimers composed of AP1-AGL24 and AP1-SVP interact with the LUG-SEU corepressor complex. We provide genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced. Our data suggest that MADS box proteins are involved in the recruitment of the SEU-LUG repressor complex for the regulation of AGAMOUS.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.