We present new multiscale structural, mineral chemical, and U-Pb isotope dilution–thermal ionization mass spectrometry (ID-TIMS) data in order to unravel part of the tectono-metamorphic evolution of the Shuswap complex in the southern Canadian Cordillera. We reconstructed the pressure-temperature-deformation-time (P-T-d-t) history of the Joss Mountain domain within the Shuswap complex. The west-dipping Greenbush shear zone separates the Joss Mountain domain from the structurally lower Thor-Odin culmination to the east, the southern culmination of the Monashee complex, and one of the structurally deepest parts of the Shuswap complex. At Joss Mountain, the protolith of an orthogneiss crystallized at ca. 360 Ma which is is consistent with Late Devonian arc magmatism along the western paleomargin of North America. Joss Mountain metasedimentary rocks and orthogneiss were transposed at ~21–29 km depth over a period of at least 20 m.y., and possibly more than 38 m.y., during Late Cretaceous to Paleocene mature stages of Cordilleran continental collision. This mature collision took place while slow detachment of the subducted oceanic lithosphere occurred and thermal conditions were approaching those of a crust undergoing postorogenic thermal relaxation. Transposition at Joss Mountain ended earlier and exhumation started earlier than in the Monashee complex. Exhumation occurred under conditions of near-isothermal decompression and geothermal gradients consistent with lithospheric thinning. Earlier and slower exhumation of the Joss Mountain domain than of the adjacent northwestern Thor-Odin culmination may have resulted from normal movement along the Greenbush shear zone contributing to the exhumation of the Shuswap complex.

Pre- to post-Cordilleran transposition history of Joss Mountain : Insights into the exhumation of the Shuswap complex, southeastern Canadian Cordillera / D. Zanoni, Y.D. Kuiper, P.F. Williams. - In: LITHOSPHERE. - ISSN 1941-8264. - 6:6(2014), pp. 419-442. [10.1130/L346.1]

Pre- to post-Cordilleran transposition history of Joss Mountain : Insights into the exhumation of the Shuswap complex, southeastern Canadian Cordillera

D. Zanoni
Primo
;
2014

Abstract

We present new multiscale structural, mineral chemical, and U-Pb isotope dilution–thermal ionization mass spectrometry (ID-TIMS) data in order to unravel part of the tectono-metamorphic evolution of the Shuswap complex in the southern Canadian Cordillera. We reconstructed the pressure-temperature-deformation-time (P-T-d-t) history of the Joss Mountain domain within the Shuswap complex. The west-dipping Greenbush shear zone separates the Joss Mountain domain from the structurally lower Thor-Odin culmination to the east, the southern culmination of the Monashee complex, and one of the structurally deepest parts of the Shuswap complex. At Joss Mountain, the protolith of an orthogneiss crystallized at ca. 360 Ma which is is consistent with Late Devonian arc magmatism along the western paleomargin of North America. Joss Mountain metasedimentary rocks and orthogneiss were transposed at ~21–29 km depth over a period of at least 20 m.y., and possibly more than 38 m.y., during Late Cretaceous to Paleocene mature stages of Cordilleran continental collision. This mature collision took place while slow detachment of the subducted oceanic lithosphere occurred and thermal conditions were approaching those of a crust undergoing postorogenic thermal relaxation. Transposition at Joss Mountain ended earlier and exhumation started earlier than in the Monashee complex. Exhumation occurred under conditions of near-isothermal decompression and geothermal gradients consistent with lithospheric thinning. Earlier and slower exhumation of the Joss Mountain domain than of the adjacent northwestern Thor-Odin culmination may have resulted from normal movement along the Greenbush shear zone contributing to the exhumation of the Shuswap complex.
southern omineca belt; PB geochronological constraints; metamorphic core complex; thor-odin dome; garnet-biotite thermometry; northen monashee complex; grand-forks complex; British-Columbia; channel flow; extensional tectonics
Settore GEO/03 - Geologia Strutturale
Settore GEO/07 - Petrologia e Petrografia
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
LITHOSPHERE.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri
419.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/244186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact