In the present paper we give a proof of Nekhoroshev's theorem, which is concerned with an exponential estimate for the stability times in nearly integrable Hamiltonian systems. At variance with the already published proof, which refers to the case of an unperturbed Hamiltonian having the generic property of steepness, we consider here the particular case of a convex unperturbed Hamiltonian. The corresponding simplification in the proof might be convenient for an introduction to the subject.

A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems / G. Benettin, L. Galgani, A. Giorgilli. - In: CELESTIAL MECHANICS. - ISSN 0008-8714. - 37:1(1985), pp. 1-25.

A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems

L. Galgani
Secondo
;
A. Giorgilli
Ultimo
1985

Abstract

In the present paper we give a proof of Nekhoroshev's theorem, which is concerned with an exponential estimate for the stability times in nearly integrable Hamiltonian systems. At variance with the already published proof, which refers to the case of an unperturbed Hamiltonian having the generic property of steepness, we consider here the particular case of a convex unperturbed Hamiltonian. The corresponding simplification in the proof might be convenient for an introduction to the subject.
Space and Planetary Science; Astronomy and Astrophysics
Settore MAT/07 - Fisica Matematica
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/05 - Astronomia e Astrofisica
1985
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/243905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 117
  • ???jsp.display-item.citation.isi??? 123
social impact