For an autonomous nearly integrable Hamiltonian system of n degrees of freedom with n > 1 it was shown by Poincaré that, in general, no integrals of motion exist which are independent of the Hamiltonian. This result was generalized by Fermi, who showed that in general not even single invariant (2 n - 1)-dimensional manifolds exist, apart from constant-energy surfaces. On the other hand, the Kolmogorov-Amold-Moser theorem guarantees the existence of n-dimensional invariant tori. In this paper we discuss the possible existence of invariant manifolds of intermediate dimensions and conclude that, apart from very well-defined exceptions (namely, manifolds of the so-called resonant type and (n + 1)-dimensional families of n tori with mutually proportional frequencies), in general such invariant manifolds do not exist.
Poincaré mostrò che per, un sistema hamiltoniano autonomo quasi integrabile adn gradi di libertà, conn > 1, in generale non esistono integrali del moto indipendenti dalrhamiltoniana. Fermi generalizzò poi il risultato mostrando che, in generale, non esistono neppure singole varietà invarianti di dimensione 2n - 1, a parte le superfici di energia costante. D’altro canto il teorema di Kolmogorov, Arnold e Moser garantisce l’esistenza di tori invarianti di dimensionen. Nel presente lavoro si discute l’eventuale esistenza di varietà invarianti di dimensione intermedia e si conclude che, a parte ben definite eccezioni (varietà cosiddette risonanti, e famiglie (n + l)-dimensionali din-tori, con frequenze mutuamente proporzionali), in générale tali varietà invarianti non esistono.
An extension of the Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems / G. Benettin, G. Ferrari, L. Galgani, A. Giorgilli. - In: NUOVO CIMENTO. B. - ISSN 0369-3554. - 72:2(1982), pp. 137-148. [10.1007/BF02829400]
An extension of the Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems
L. Galgani
;A. Giorgilli
1982
Abstract
For an autonomous nearly integrable Hamiltonian system of n degrees of freedom with n > 1 it was shown by Poincaré that, in general, no integrals of motion exist which are independent of the Hamiltonian. This result was generalized by Fermi, who showed that in general not even single invariant (2 n - 1)-dimensional manifolds exist, apart from constant-energy surfaces. On the other hand, the Kolmogorov-Amold-Moser theorem guarantees the existence of n-dimensional invariant tori. In this paper we discuss the possible existence of invariant manifolds of intermediate dimensions and conclude that, apart from very well-defined exceptions (namely, manifolds of the so-called resonant type and (n + 1)-dimensional families of n tori with mutually proportional frequencies), in general such invariant manifolds do not exist.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.