During neuronal differentiation, axonal elongation is regulated by both external and intrinsic stimuli, including neurotropic factors, cytoskeleton dynamics, second messengers such as cyclic adenosine monophosphate (cAMP), and neuronal excitability. Chloride intracellular channel 1 (CLIC1) is a cytoplasmic hydrophilic protein that, upon stimulation, dimerizes and translocates to the plasma membrane, where it contributes to increase the membrane chloride conductance. Here, we investigated the expression of CLIC1 in primary hippocampal neurons and retinal ganglion cells (RGCs) and examined how the functional expression of CLIC1 specifically modulates neurite outgrowth of neonatal murine RGCs. Using a combination of electrophysiology and immunohistochemistry, we found that CLIC1 is expressed in hippocampal neurons and RGCs and that the chloride current mediated by CLIC1 is required for maintaining growth cone morphology and sustaining cAMP-stimulated neurite elongation in dissociated immunopurified RGCs. In cultured RGCs, inhibition of CLIC1 ionic current through the pharmacological blocker IAA94 or a specific anti-CLIC1 antibody directed against its extracellular domain prevents the neurite outgrowth induced by cAMP. CLIC1-mediated chloride current, which results from an increased open probability of the channel, is detected only when cAMP is elevated. Inhibition of protein kinase A prevents such current. These results indicate that CLIC1 functional expression is regulated by cAMP via protein kinase A and is required for neurite outgrowth modulation during neuronal differentiation. © 2014 International Society for Neurochemistry.

CLIC1 functional expression is required for cAMP-induced neurite elongation in post-natal mouse retinal ganglion cells / S. Averaimo, M. Gritti, E. Barini, L. Gasparini, M. Mazzanti. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - 131:4(2014 Nov), pp. 444-456. [10.1111/jnc.12832]

CLIC1 functional expression is required for cAMP-induced neurite elongation in post-natal mouse retinal ganglion cells

S. Averaimo
Primo
;
M. Gritti
Secondo
;
M. Mazzanti
2014

Abstract

During neuronal differentiation, axonal elongation is regulated by both external and intrinsic stimuli, including neurotropic factors, cytoskeleton dynamics, second messengers such as cyclic adenosine monophosphate (cAMP), and neuronal excitability. Chloride intracellular channel 1 (CLIC1) is a cytoplasmic hydrophilic protein that, upon stimulation, dimerizes and translocates to the plasma membrane, where it contributes to increase the membrane chloride conductance. Here, we investigated the expression of CLIC1 in primary hippocampal neurons and retinal ganglion cells (RGCs) and examined how the functional expression of CLIC1 specifically modulates neurite outgrowth of neonatal murine RGCs. Using a combination of electrophysiology and immunohistochemistry, we found that CLIC1 is expressed in hippocampal neurons and RGCs and that the chloride current mediated by CLIC1 is required for maintaining growth cone morphology and sustaining cAMP-stimulated neurite elongation in dissociated immunopurified RGCs. In cultured RGCs, inhibition of CLIC1 ionic current through the pharmacological blocker IAA94 or a specific anti-CLIC1 antibody directed against its extracellular domain prevents the neurite outgrowth induced by cAMP. CLIC1-mediated chloride current, which results from an increased open probability of the channel, is detected only when cAMP is elevated. Inhibition of protein kinase A prevents such current. These results indicate that CLIC1 functional expression is regulated by cAMP via protein kinase A and is required for neurite outgrowth modulation during neuronal differentiation. © 2014 International Society for Neurochemistry.
cAMP ; Chloride current ; CLIC1 ; Neurite growth ; PKA ; Retinal ganglion cells ; Cellular and Molecular Neuroscience ; Biochemistry
Settore BIO/09 - Fisiologia
nov-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
Averaimo et al., 2014.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/243420
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact