We investigate some asymptotic properties of extrema u(alpha) to the two-dimensional variational problem sup integral(B) (e(gamma u2) - 1)vertical bar x vertical bar(alpha)dx e epsilon H1/0(B) vertical bar vertical bar u vertical bar vertical bar= 1 as alpha + infinity. Here B is the unit disk of R-2 and 0 < gamma <= 4 pi is a given parameter. We prove that in a certain range of gamma's, the maximizers are not radial for alpha large.
Symmetry breaking results for problems with exponential growth in the unit disk / S. Secchi, E. Serra. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 8:6(2006), pp. 823-839.
Symmetry breaking results for problems with exponential growth in the unit disk
S. SecchiPrimo
;E. SerraUltimo
2006
Abstract
We investigate some asymptotic properties of extrema u(alpha) to the two-dimensional variational problem sup integral(B) (e(gamma u2) - 1)vertical bar x vertical bar(alpha)dx e epsilon H1/0(B) vertical bar vertical bar u vertical bar vertical bar= 1 as alpha + infinity. Here B is the unit disk of R-2 and 0 < gamma <= 4 pi is a given parameter. We prove that in a certain range of gamma's, the maximizers are not radial for alpha large.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.