The metabolic responses occurring in cucumber (Cucumis sativus L.) roots (a strategy-I plant) grown under iron-deficiency conditions were studied in-vivo using 31P-nuclear magnetic resonance spectroscopy. Iron starvation induced activation of metabolism leading to the consumption of stored carbohydrates to produce the NAD(P)H, ATP and phosphoenolpyruvate necessary to sustain the increased activity of the NAD(P)H:Fe3+-reductase, the H+-ATPase (EC 3.6.1.35) and phosphoenolpyruvate carboxylase (EC 4.1.1.31). Activation of catabolic pathways was supported by the enhancement of glycolytic enzymes and concentrations of the metabolites glucose-6-phosphate and fructose-6-phosphate, and by enhancement of the respiration rate. Moreover, Fe-deficiency induced a slight increase in the cytoplasmic (pH(c)) and vacuolar (pH(v)) pHs as well as a dramatic decrease in the vacuolar phosphate (Pi) concentration. A comparison was done using fusicoccin (FC), a fungal toxin which stimulates proton extrusion. Changes in pH(c) and pH(v) were measured after addition of FC. Under these conditions, a dramatic alkalinization of the pH(v) of -Fe roots was observed, as well as a concomitant Pi movement from the vacuole to the cytoplasm. These results showed that Fe starvation was indeed accompanied by the activation of metabolic processes useful for sustaining the typical responses occurring at the plasma-membrane level (i.e. increases in the NAD(P)H:Fe3+-reductase and H+-ATPase activities) as well as those involved in the homeostasis of pH(c). The decrease in vacuolar Pi levels induced by Fe-deficiency and FC and movement of Pi from the vacuole to the cytoplasm suggest a possible involvement of this compound in the cellular pH-stat system.

Metabolic responses in cucumber (Cucumis sativus L.) root under Fe-deficiency : a 31NMR in vivo study / L. Espen, M. Dell'Orto, P. De Nisi, G. Zocchi. - In: PLANTA. - ISSN 0032-0935. - 210:6(2000), pp. 985-992.

Metabolic responses in cucumber (Cucumis sativus L.) root under Fe-deficiency : a 31NMR in vivo study

L. Espen;P. De Nisi;G. Zocchi
2000

Abstract

The metabolic responses occurring in cucumber (Cucumis sativus L.) roots (a strategy-I plant) grown under iron-deficiency conditions were studied in-vivo using 31P-nuclear magnetic resonance spectroscopy. Iron starvation induced activation of metabolism leading to the consumption of stored carbohydrates to produce the NAD(P)H, ATP and phosphoenolpyruvate necessary to sustain the increased activity of the NAD(P)H:Fe3+-reductase, the H+-ATPase (EC 3.6.1.35) and phosphoenolpyruvate carboxylase (EC 4.1.1.31). Activation of catabolic pathways was supported by the enhancement of glycolytic enzymes and concentrations of the metabolites glucose-6-phosphate and fructose-6-phosphate, and by enhancement of the respiration rate. Moreover, Fe-deficiency induced a slight increase in the cytoplasmic (pH(c)) and vacuolar (pH(v)) pHs as well as a dramatic decrease in the vacuolar phosphate (Pi) concentration. A comparison was done using fusicoccin (FC), a fungal toxin which stimulates proton extrusion. Changes in pH(c) and pH(v) were measured after addition of FC. Under these conditions, a dramatic alkalinization of the pH(v) of -Fe roots was observed, as well as a concomitant Pi movement from the vacuole to the cytoplasm. These results showed that Fe starvation was indeed accompanied by the activation of metabolic processes useful for sustaining the typical responses occurring at the plasma-membrane level (i.e. increases in the NAD(P)H:Fe3+-reductase and H+-ATPase activities) as well as those involved in the homeostasis of pH(c). The decrease in vacuolar Pi levels induced by Fe-deficiency and FC and movement of Pi from the vacuole to the cytoplasm suggest a possible involvement of this compound in the cellular pH-stat system.
Cucumis (Fe-deficiency); Fusicoccin; Intracellular pH; Iron deficiency
Settore AGR/13 - Chimica Agraria
2000
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/240361
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 62
  • ???jsp.display-item.citation.isi??? ND
social impact