Although sponges are still often considered to be simple, inactive animals, both larvae and adults of different species show clear coordination phenomena triggered by extrinsic and intrinsic stimuli. Chondrosia reniformis, a common Mediterranean demosponge, lacks both endogenous siliceous spicules and reinforcing spongin fibers and has a very conspicuous collagenous mesohyl. Although this species can stiffen its body in response to mechanical stimulation when handled, almost no quantitative data are available in the literature on this phenomenon. The present work was intended to quantify the dynamic response to mechanical stimulation both of intact animals and isolated tissue samples in order to evaluate: (i) the magnitude of stiffening; (ii) the relationship between the amount of stimulation and the magnitude of the stiffening response; (iii) the ability of the whole body to react to localized stimulation; (iv) the possible occurrence of a conduction mechanism and the role of the exopinacoderm (outer epithelium). Data on mesohyl tensility obtained with mechanical tests confirmed the difference between stimulated and non-stimulated isolated tissue samples, showing a significant relationship between ectosome stiffness and the amount of mechanical stimulation. Our experiments revealed a significant difference in tensility between undisturbed and maximally stiffened sponges and evidence of signal transmission that requires a continuous exopinacoderm. We also provide further evidence for the presence of a chemical factor that alters the interaction between collagen fibrils, thereby changing the mechanical properties of the mesohyl.

The reaction of the sponge Chondrosia reniformis to mechanical stimulation is mediated by the outer epithelium and the release of stiffening factor(s) / D. Fassini, L. Parma, F. Lembo, M.D. Candia, I.C. Wilkie, F. Bonasoro. - In: ZOOLOGY. - ISSN 0944-2006. - 117:4(2014 Aug), pp. 282-291. [10.1016/j.zool.2014.03.003]

The reaction of the sponge Chondrosia reniformis to mechanical stimulation is mediated by the outer epithelium and the release of stiffening factor(s)

M.D. Candia;F. Bonasoro
Ultimo
2014

Abstract

Although sponges are still often considered to be simple, inactive animals, both larvae and adults of different species show clear coordination phenomena triggered by extrinsic and intrinsic stimuli. Chondrosia reniformis, a common Mediterranean demosponge, lacks both endogenous siliceous spicules and reinforcing spongin fibers and has a very conspicuous collagenous mesohyl. Although this species can stiffen its body in response to mechanical stimulation when handled, almost no quantitative data are available in the literature on this phenomenon. The present work was intended to quantify the dynamic response to mechanical stimulation both of intact animals and isolated tissue samples in order to evaluate: (i) the magnitude of stiffening; (ii) the relationship between the amount of stimulation and the magnitude of the stiffening response; (iii) the ability of the whole body to react to localized stimulation; (iv) the possible occurrence of a conduction mechanism and the role of the exopinacoderm (outer epithelium). Data on mesohyl tensility obtained with mechanical tests confirmed the difference between stimulated and non-stimulated isolated tissue samples, showing a significant relationship between ectosome stiffness and the amount of mechanical stimulation. Our experiments revealed a significant difference in tensility between undisturbed and maximally stiffened sponges and evidence of signal transmission that requires a continuous exopinacoderm. We also provide further evidence for the presence of a chemical factor that alters the interaction between collagen fibrils, thereby changing the mechanical properties of the mesohyl.
Pinacoderm; Signal transmission; Mesohyl mechanical properties; Stiffening factor; Collagen
Settore BIO/05 - Zoologia
ago-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S094420061400052X-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/238933
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact