OBJECTIVES: In the presurgical analysis for drug-resistant focal epilepsies, the definition of the epileptogenic zone, which is the cortical area where ictal discharges originate, is usually carried out by using clinical, electrophysiological and neuroimaging data analysis. Clinical evaluation is based on the visual detection of symptoms during epileptic seizures. This work aims at developing a fully automatic classifier of epileptic types and their localization using ictal symptoms and machine learning methods. METHODS: We present the results achieved by using two machine learning methods. The first is an ontology-based classification that can directly incorporate human knowledge, while the second is a genetics-based data mining algorithm that learns or extracts the domain knowledge from medical data in implicit form. RESULTS: The developed methods are tested on a clinical dataset of 129 patients. The performance of the methods is measured against the performance of seven clinicians, whose level of expertise is high/very high, in classifying two epilepsy types: temporal lobe epilepsy and extra-temporal lobe epilepsy. When comparing the performance of the algorithms with that of a single clinician, who is one of the seven clinicians, the algorithms show a slightly better performance than the clinician on three test sets generated randomly from 99 patients out of the 129 patients. The accuracy obtained for the two methods and the clinician is as follows: first test set 65.6% and 75% for the methods and 56.3% for the clinician, second test set 66.7% and 76.2% for the methods and 61.9% for the clinician, and third test set 77.8% for the methods and the clinician. When compared with the performance of the whole population of clinicians on the rest 30 patients out of the 129 patients, where the patients were selected by the clinicians themselves, the mean accuracy of the methods (60%) is slightly worse than the mean accuracy of the clinicians (61.6%). Results show that the methods perform at the level of experienced clinicians, when both the methods and the clinicians use the same information. CONCLUSION: Our results demonstrate that the developed methods form important ingredients for realizing a fully automatic classification of epilepsy types and can contribute to the definition of signs that are most important for the classification.

Automatic classification of epilepsy types using ontology-based and genetics-based machine learning / Y. Kassahun, R. Perrone, E. De Momi, E. Berghöferf, L. Tassi, M.P. Canevini, R. Spreafico, G. Ferrigno, F. Kirchner. - In: ARTIFICIAL INTELLIGENCE IN MEDICINE. - ISSN 0933-3657. - 61:2(2014 Jun), pp. 79-88. [10.1016/j.artmed.2014.03.001]

Automatic classification of epilepsy types using ontology-based and genetics-based machine learning

M.P. Canevini;
2014

Abstract

OBJECTIVES: In the presurgical analysis for drug-resistant focal epilepsies, the definition of the epileptogenic zone, which is the cortical area where ictal discharges originate, is usually carried out by using clinical, electrophysiological and neuroimaging data analysis. Clinical evaluation is based on the visual detection of symptoms during epileptic seizures. This work aims at developing a fully automatic classifier of epileptic types and their localization using ictal symptoms and machine learning methods. METHODS: We present the results achieved by using two machine learning methods. The first is an ontology-based classification that can directly incorporate human knowledge, while the second is a genetics-based data mining algorithm that learns or extracts the domain knowledge from medical data in implicit form. RESULTS: The developed methods are tested on a clinical dataset of 129 patients. The performance of the methods is measured against the performance of seven clinicians, whose level of expertise is high/very high, in classifying two epilepsy types: temporal lobe epilepsy and extra-temporal lobe epilepsy. When comparing the performance of the algorithms with that of a single clinician, who is one of the seven clinicians, the algorithms show a slightly better performance than the clinician on three test sets generated randomly from 99 patients out of the 129 patients. The accuracy obtained for the two methods and the clinician is as follows: first test set 65.6% and 75% for the methods and 56.3% for the clinician, second test set 66.7% and 76.2% for the methods and 61.9% for the clinician, and third test set 77.8% for the methods and the clinician. When compared with the performance of the whole population of clinicians on the rest 30 patients out of the 129 patients, where the patients were selected by the clinicians themselves, the mean accuracy of the methods (60%) is slightly worse than the mean accuracy of the clinicians (61.6%). Results show that the methods perform at the level of experienced clinicians, when both the methods and the clinicians use the same information. CONCLUSION: Our results demonstrate that the developed methods form important ingredients for realizing a fully automatic classification of epilepsy types and can contribute to the definition of signs that are most important for the classification.
Data mining (knowledge discovery) from medical data; Epileptogenic zone identification; Genetics-based classification; Ontology-based classification
Settore MED/39 - Neuropsichiatria Infantile
Settore MED/26 - Neurologia
giu-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0933365714000207-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/238082
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 36
social impact