Twitter is one of the most popular micro-blogging services in the world, often studied in the context of political opinion mining for its peculiar nature of online public discussion platform. In our work we analyse the phenomenon of political disaffection defined as the "lack of confidence in the political process, politicians, and democratic institutions, but with no questioning of the political regime". Disaffection for organised political parties and institutions has been object of studies and media attention in several Western countries. Especially the Italian case has shown a wide diffusion of this attitude. For this reason, we collect a massive database of Italian Twitter data (about 35 millions of tweets from April 2012 to October 2012) and we exploit scalable state-of-the-art machine learning techniques to generate time-series concerning the political disaffection discourse. In order to validate the quality of the time-series generated, we compare them with indicators of political disaffection from public opinion surveys. We find political disaffection on Twitter to be highly correlated with the indicators of political disaffection in the public opinion surveys. Moreover, we show the peaks in the timeseries are often generated by external political events reported on the main newspapers.

Modelling political disaffection from Twitter data / C. Monti, A. Rozza, G. Zappella, M. Zignani, A. Arvidsson, E. Colleoni - In: WISDOM 13 : proceedings of the 2nd International workshop on issues of sentiment discovery and opinion mining, held in conjunction with SIGKDD 2013 : Chicago, USA, aug 11 - aug 14, 2013New York : Association for computing machinery, 2013. - ISBN 9781450323321. - pp. 1-9 (( Intervento presentato al 2. convegno International Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM), held in conjunction with SIGKDD tenutosi a Chicago, USA nel 2013 [10.1145/2502069.2502072].

Modelling political disaffection from Twitter data

C. Monti;A. Rozza;G. Zappella;M. Zignani;A. Arvidsson;COLLEONI, ELANOR
2013

Abstract

Twitter is one of the most popular micro-blogging services in the world, often studied in the context of political opinion mining for its peculiar nature of online public discussion platform. In our work we analyse the phenomenon of political disaffection defined as the "lack of confidence in the political process, politicians, and democratic institutions, but with no questioning of the political regime". Disaffection for organised political parties and institutions has been object of studies and media attention in several Western countries. Especially the Italian case has shown a wide diffusion of this attitude. For this reason, we collect a massive database of Italian Twitter data (about 35 millions of tweets from April 2012 to October 2012) and we exploit scalable state-of-the-art machine learning techniques to generate time-series concerning the political disaffection discourse. In order to validate the quality of the time-series generated, we compare them with indicators of political disaffection from public opinion surveys. We find political disaffection on Twitter to be highly correlated with the indicators of political disaffection in the public opinion surveys. Moreover, we show the peaks in the timeseries are often generated by external political events reported on the main newspapers.
Settore INF/01 - Informatica
ACM Special Interest Group on Knowledge Discovery in Data (SIGKDD)
ACM Special Interest Group on Management of Data (SIGMOD)
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/237340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact