Memo is an evolutionarily conserved protein with a critical role in cell motility. We found that Memo was required for migration and invasion of breast cancer cells in vitro and spontaneous lung metastasis from breast cancer cell xenografts in vivo. Biochemical assays revealed that Memo is a copper-dependent redox enzyme that promoted a more oxidized intracellular milieu and stimulated the production of reactive oxygen species (ROS) in cellular structures involved in migration. Memo was also required for the sustained production of the ROS O2 (-) by NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 1 (NOX1) in breast cancer cells. Memo abundance was increased in >40% of the primary breast tumors tested, was correlated with clinical parameters of aggressive disease, and was an independent prognostic factor of early distant metastasis.

Memo is a copper-dependent redox protein with an essential role in migration and metastasis / G. MacDonald, I. Nalvarte, T. Smirnova, M. Vecchi, N. Aceto, A. Dolemeyer, A. Frei, S. Lienhard, J. Wyckoff, D. Hess, J. Seebacher, J.J. Keusch, H. Gut, D. Salaun, G. Mazzarol, D. Disalvatore, M. Bentires-Alj, P.P. Di Fiore, A. Badache, N.E. Hynes. - In: SCIENCE SIGNALING. - ISSN 1937-9145. - 7:329(2014 Jun 10), pp. ra56.1-ra56.12. [10.1126/scisignal.2004870]

Memo is a copper-dependent redox protein with an essential role in migration and metastasis

P.P. Di Fiore;
2014

Abstract

Memo is an evolutionarily conserved protein with a critical role in cell motility. We found that Memo was required for migration and invasion of breast cancer cells in vitro and spontaneous lung metastasis from breast cancer cell xenografts in vivo. Biochemical assays revealed that Memo is a copper-dependent redox enzyme that promoted a more oxidized intracellular milieu and stimulated the production of reactive oxygen species (ROS) in cellular structures involved in migration. Memo was also required for the sustained production of the ROS O2 (-) by NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 1 (NOX1) in breast cancer cells. Memo abundance was increased in >40% of the primary breast tumors tested, was correlated with clinical parameters of aggressive disease, and was an independent prognostic factor of early distant metastasis.
Settore MED/04 - Patologia Generale
10-giu-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
Gwen MacDonald et al Scie Sign.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/236874
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 91
social impact