Thyroxine-binding globulin (TBG) is the main thyroid hormone transport protein in serum. Inherited TBG defects lead to a complete (TBG-CD) or a partial (TBG-PD) deficiency and have a diagenic transmission, being clinically fully expressed only in hemizygous males and in homozygous females. In the present study, seven patients from two unrelated families with TBG-CD were studied and two novel TBG mutations were documented. In particular, a T insertion at the 5′ donor splice site of exon 0, between nucleotides 2 and 3 at the beginning of intron 1 (g.IVS1+2_3insT) was found in one family and was named TBG-Milano. The other novel mutation is a T deletion at nucleotide 214 of exon 1, which leads to a frameshift at codon 50 with a premature stop codon at position 51 (c.214delT, P50fsX51) and was named TBG-Nikita. According to the X-linked transmission of the defect, females harboring the mutation showed a reduction in TBG levels with normal TSH and total thyroid hormone values at the lower limit of normal. Males harboring either TBG-Milano or TBG-Nikita, showed normal TSH values and low levels of total thyroid hormones and lacked TBG. In conclusion, we report two novel mutations of the TBG gene associated with a complete TBG defect. The first mutation lies at the 5′ donor splice site of exon 0 and probably alters the start of translation, while the second is a single nucleotide deletion and leads to a premature stop codon.
TBG deficiency: description of two novel mutations associated with complete TBG deficiency and review of the literature / D. Mannavola, G. Vannucchi, L. Fugazzola, V. Cirello, I. Campi, G. Radetti, L. Persani, S. Refetoff, P. Beck-Peccoz. - In: JOURNAL OF MOLECULAR MEDICINE. - ISSN 0946-2716. - 84:10(2006 Oct), pp. 864-871. [10.1007/s00109-006-0078-9]
TBG deficiency: description of two novel mutations associated with complete TBG deficiency and review of the literature
D. MannavolaPrimo
;G. VannucchiSecondo
;L. Fugazzola;V. Cirello;I. Campi;L. Persani;P. Beck-Peccoz
2006
Abstract
Thyroxine-binding globulin (TBG) is the main thyroid hormone transport protein in serum. Inherited TBG defects lead to a complete (TBG-CD) or a partial (TBG-PD) deficiency and have a diagenic transmission, being clinically fully expressed only in hemizygous males and in homozygous females. In the present study, seven patients from two unrelated families with TBG-CD were studied and two novel TBG mutations were documented. In particular, a T insertion at the 5′ donor splice site of exon 0, between nucleotides 2 and 3 at the beginning of intron 1 (g.IVS1+2_3insT) was found in one family and was named TBG-Milano. The other novel mutation is a T deletion at nucleotide 214 of exon 1, which leads to a frameshift at codon 50 with a premature stop codon at position 51 (c.214delT, P50fsX51) and was named TBG-Nikita. According to the X-linked transmission of the defect, females harboring the mutation showed a reduction in TBG levels with normal TSH and total thyroid hormone values at the lower limit of normal. Males harboring either TBG-Milano or TBG-Nikita, showed normal TSH values and low levels of total thyroid hormones and lacked TBG. In conclusion, we report two novel mutations of the TBG gene associated with a complete TBG defect. The first mutation lies at the 5′ donor splice site of exon 0 and probably alters the start of translation, while the second is a single nucleotide deletion and leads to a premature stop codon.File | Dimensione | Formato | |
---|---|---|---|
Mannavolatbg.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
392.73 kB
Formato
Adobe PDF
|
392.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.