We present a pilot data mining analysis on the subset of the Public Health Database (PHD) of Lombardia Region concerning hospital discharge data relative to Acute Myocardial Infarctions without ST segment elevation (NONSTEMI). The analysis is carried out using nonlinear semi-parametric and parametric mixed effectsmodels, in order to detect different patterns of growth in the number of NON-STEMI diagnoses within the 30 largest clinical structures of Lombardia Region, along the time period 2000–2007. The analysis is a seminal example of statistical support to decision makers in clinical context, aimed at monitoring the diffusion of new procedures and the effects of health policy interventions.

Mining Administrative Health Databases for epidemiological purposes: a case study on Acute Myocardial Infarctions diagnoses / F. Ieva, A.M. Paganoni, P. Secchi - In: Advances in Theoretical and Applied Statistics / [a cura di] F. Pesarin, N. Torelli, A. Bar-Hen. - [s.l] : Springer, 2013. - ISBN 978-3-642-35588-2. - pp. 417-426 [10.1007/978-3-642-35588-2_38]

Mining Administrative Health Databases for epidemiological purposes: a case study on Acute Myocardial Infarctions diagnoses

F. Ieva
Primo
;
2013

Abstract

We present a pilot data mining analysis on the subset of the Public Health Database (PHD) of Lombardia Region concerning hospital discharge data relative to Acute Myocardial Infarctions without ST segment elevation (NONSTEMI). The analysis is carried out using nonlinear semi-parametric and parametric mixed effectsmodels, in order to detect different patterns of growth in the number of NON-STEMI diagnoses within the 30 largest clinical structures of Lombardia Region, along the time period 2000–2007. The analysis is a seminal example of statistical support to decision makers in clinical context, aimed at monitoring the diffusion of new procedures and the effects of health policy interventions.
Biostatistics and bioinformatics ; Data mining ; Generalized linear mixed models ; Health service research
Settore SECS-S/01 - Statistica
Settore MED/01 - Statistica Medica
http://link.springer.com/chapter/10.1007%2F978-3-642-35588-2_38
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
cap38 DEF.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 409.56 kB
Formato Adobe PDF
409.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/233635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact