We consider quasi-linear elliptic equations involving the p-Laplacian with nonlinearities which interfere asymptotically with the spectrum of the differential operator. We show that such equations have for certain forcing terms at least two solutions. Such equations are of the so-called Ambrosetti Prodi type. In particular, our theorem is a partial generalization of corresponding results for the semi-linear case by Ruf and Srikanth (1986) and de Figueiredo (1988).

Multiplicity of solutions for a superlinear p-Laplacian equation / F. Torre, B. Ruf. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 73:7(2010), pp. 2132-2147.

Multiplicity of solutions for a superlinear p-Laplacian equation

B. Ruf
2010

Abstract

We consider quasi-linear elliptic equations involving the p-Laplacian with nonlinearities which interfere asymptotically with the spectrum of the differential operator. We show that such equations have for certain forcing terms at least two solutions. Such equations are of the so-called Ambrosetti Prodi type. In particular, our theorem is a partial generalization of corresponding results for the semi-linear case by Ruf and Srikanth (1986) and de Figueiredo (1988).
p-Laplacian ; Ambrosetti Prodi problem ; Multiple solutions Linking theorem
Settore MAT/05 - Analisi Matematica
2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
RT-1.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 283.33 kB
Formato Adobe PDF
283.33 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/233445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact