We consider quasi-linear elliptic equations involving the p-Laplacian with nonlinearities which interfere asymptotically with the spectrum of the differential operator. We show that such equations have for certain forcing terms at least two solutions. Such equations are of the so-called Ambrosetti Prodi type. In particular, our theorem is a partial generalization of corresponding results for the semi-linear case by Ruf and Srikanth (1986) and de Figueiredo (1988).
Multiplicity of solutions for a superlinear p-Laplacian equation / F. Torre, B. Ruf. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 73:7(2010), pp. 2132-2147.
Titolo: | Multiplicity of solutions for a superlinear p-Laplacian equation |
Autori: | |
Parole Chiave: | p-Laplacian ; Ambrosetti Prodi problem ; Multiple solutions Linking theorem |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Data di pubblicazione: | 2010 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.na.2010.05.040 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
RT-1.pdf | Pre-print (manoscritto inviato all'editore) | Open Access Visualizza/Apri |