We study the semiclassical limit of the least energy solutions to the nonlinear Dirac equation in R^3. We prove that the equation has least energy solutions for all small parameters and, in addition, that the solutions converge in a certain sense to the least energy solution of the associated limit problem as the parameter tends to zero.

On semiclassical states of a nonlinear Dirac equation / Y.H. Ding, C. Lee, B. Ruf. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 143:04(2013), pp. 765-790. [10.1017/S0308210511001752]

On semiclassical states of a nonlinear Dirac equation

B. Ruf
2013

Abstract

We study the semiclassical limit of the least energy solutions to the nonlinear Dirac equation in R^3. We prove that the equation has least energy solutions for all small parameters and, in addition, that the solutions converge in a certain sense to the least energy solution of the associated limit problem as the parameter tends to zero.
Nonlinear Dirac equation ; semiclassical states ; least energy solutions
Settore MAT/05 - Analisi Matematica
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
a11175-2.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 260.84 kB
Formato Adobe PDF
260.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/233298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact