The photoreceptor phytochrome B (PHYB) and the homeodomain protein BEL5 are involved in the response of potato tuber induction to the photoperiod. However, whether they act in the same tuberization pathway is unknown. Here we show the effect of a microRNA, miR172, on this developmental event. miR172 levels are higher under tuber-inducing short days than under non-inductive long days and are upregulated in stolons at the onset of tuberization. Overexpression of this microRNA in potato promotes flowering, accelerates tuberization under moderately inductive photoperiods and triggers tuber formation under long days. In plants with a reduced abundance of PHYB, which tuberize under long days, both BEL5 mRNA and miR172 levels are reduced in leaves and increased in stolons. This, together with the presence of miR172 in vascular bundles and the graft transmissibility of its effect on tuberization, indicates that either miR172 might be mobile or it regulates long-distance signals to induce tuberization. Consistent with this, plants overexpressing miR172 show increased levels of BEL5 mRNA, which has been reported to be transmissible through grafts. Furthermore, we identify an APETALA2-like mRNA containing a miR172 binding site, which is downregulated in plants overexpressing miR172 and plants in which PHYB is silenced. Altogether, our results suggest that miR172 probably acts downstream of the tuberization repressor PHYB and upstream of the tuberization promoter BEL5 and allow us to propose a model for the control of tuberization by PHYB, miR172 and BEL5.

Graft-transmissible induction of potato tuberization by the microRNA miR172 / A. Martin, H. Adam, M. Díaz-Mendoza, M. Zurczak, N.D. González-Schain, P. Suárez-López. - In: DEVELOPMENT. - ISSN 0950-1991. - 136:17(2009 Sep), pp. 2873-2881.

Graft-transmissible induction of potato tuberization by the microRNA miR172

N.D. González-Schain;
2009

Abstract

The photoreceptor phytochrome B (PHYB) and the homeodomain protein BEL5 are involved in the response of potato tuber induction to the photoperiod. However, whether they act in the same tuberization pathway is unknown. Here we show the effect of a microRNA, miR172, on this developmental event. miR172 levels are higher under tuber-inducing short days than under non-inductive long days and are upregulated in stolons at the onset of tuberization. Overexpression of this microRNA in potato promotes flowering, accelerates tuberization under moderately inductive photoperiods and triggers tuber formation under long days. In plants with a reduced abundance of PHYB, which tuberize under long days, both BEL5 mRNA and miR172 levels are reduced in leaves and increased in stolons. This, together with the presence of miR172 in vascular bundles and the graft transmissibility of its effect on tuberization, indicates that either miR172 might be mobile or it regulates long-distance signals to induce tuberization. Consistent with this, plants overexpressing miR172 show increased levels of BEL5 mRNA, which has been reported to be transmissible through grafts. Furthermore, we identify an APETALA2-like mRNA containing a miR172 binding site, which is downregulated in plants overexpressing miR172 and plants in which PHYB is silenced. Altogether, our results suggest that miR172 probably acts downstream of the tuberization repressor PHYB and upstream of the tuberization promoter BEL5 and allow us to propose a model for the control of tuberization by PHYB, miR172 and BEL5.
Gene Expression Regulation, Plant ; MicroRNAs ; Photoperiod ; Solanum tuberosum ; Amino Acid Sequence ; Molecular Sequence Data ; Photoreceptor Cells ; Phytochrome B ; Plant Proteins ; Plant Tubers ; Sequence Alignment ; Sequence Homology, Amino Acid
Settore BIO/11 - Biologia Molecolare
set-2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
2873.full.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 791.69 kB
Formato Adobe PDF
791.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/233258
Citazioni
  • ???jsp.display-item.citation.pmc??? 71
  • Scopus 277
  • ???jsp.display-item.citation.isi??? 244
  • OpenAlex ND
social impact