In the context of medical, epidemiological and health organization research there are many situations in which it is necessary to develop prediction models that identify multiclass categorical variable outcomes, where the latter may be nominal or ordered. When the outcome variable is binary, consolidated modeling techniques based on logistic function are available. On the contrary, up to now, models for multiple classes outcome, taking into account ordinality or not, were developed from a theoretical point of view but not widespreadly used. Limited software availability and the difficulty in making the results suitable for pratictioners in a simple way are the main reasons for such a limited use. This has leaded to many published studies in wich a dichotomization of the outcome variable was introduced in order to allow the application of the logistic model, thus losing part of the data information and reducing the power of results. This dissertation provides an overview of the available theoretical models and shows their implementation for a problem of three-classes diagnostic classification of the severity of liver fibrosis in HCV patients. Moreover, a representation of the selected model by means of immediately readable nomograms is also provided.

IMPLEMENTAZIONE DI MODELLI PER VARIABILI RISPOSTA QUALITATIVE E MISURE PER LA VALUTAZIONE DELLA CAPACITÀ PREDITTIVA: APPLICAZIONE ALLA STADIAZIONE DELLA FIBROSI EPATICA IN PAZIENTI CON EPATITE CRONICA C / M. Lanzoni ; tutor: E. Biganzoli ; coordinatore: A. Decarli. DIPARTIMENTO DI SCIENZE CLINICHE E DI COMUNITA', 2014 Feb 25. 25. ciclo, Anno Accademico 2012. [10.13130/lanzoni-monica_phd2014-02-25].

IMPLEMENTAZIONE DI MODELLI PER VARIABILI RISPOSTA QUALITATIVE E MISURE PER LA VALUTAZIONE DELLA CAPACITÀ PREDITTIVA: APPLICAZIONE ALLA STADIAZIONE DELLA FIBROSI EPATICA IN PAZIENTI CON EPATITE CRONICA C.

M. Lanzoni
2014

Abstract

In the context of medical, epidemiological and health organization research there are many situations in which it is necessary to develop prediction models that identify multiclass categorical variable outcomes, where the latter may be nominal or ordered. When the outcome variable is binary, consolidated modeling techniques based on logistic function are available. On the contrary, up to now, models for multiple classes outcome, taking into account ordinality or not, were developed from a theoretical point of view but not widespreadly used. Limited software availability and the difficulty in making the results suitable for pratictioners in a simple way are the main reasons for such a limited use. This has leaded to many published studies in wich a dichotomization of the outcome variable was introduced in order to allow the application of the logistic model, thus losing part of the data information and reducing the power of results. This dissertation provides an overview of the available theoretical models and shows their implementation for a problem of three-classes diagnostic classification of the severity of liver fibrosis in HCV patients. Moreover, a representation of the selected model by means of immediately readable nomograms is also provided.
25-feb-2014
prediction models ; multinomial ; nomograms ; model validation
Settore MED/01 - Statistica Medica
BIGANZOLI, ELIA
DECARLI, ADRIANO
Doctoral Thesis
IMPLEMENTAZIONE DI MODELLI PER VARIABILI RISPOSTA QUALITATIVE E MISURE PER LA VALUTAZIONE DELLA CAPACITÀ PREDITTIVA: APPLICAZIONE ALLA STADIAZIONE DELLA FIBROSI EPATICA IN PAZIENTI CON EPATITE CRONICA C / M. Lanzoni ; tutor: E. Biganzoli ; coordinatore: A. Decarli. DIPARTIMENTO DI SCIENZE CLINICHE E DI COMUNITA', 2014 Feb 25. 25. ciclo, Anno Accademico 2012. [10.13130/lanzoni-monica_phd2014-02-25].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R08917.pdf

accesso aperto

Tipologia: Tesi di dottorato completa
Dimensione 904.04 kB
Formato Adobe PDF
904.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/232972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact