Epigenetic mechanisms play important roles in brain development, orchestrating proliferation, differentiation, and morphogenesis. Lysine-Specific Demethylase 1 (LSD1 also known as KDM1A and AOF2) is a histone modifier involved in transcriptional repression, forming a stable core complex with the corepressors corepressor of REST (CoREST) and histone deacetylases (HDAC1/2). Importantly, in the mammalian CNS, neuronal LSD1-8a, an alternative splicing isoform of LSD1 including the mini-exon E8a, sets alongside LSD1 and is capable of enhancing neurite growth and morphogenesis. Here, we describe that the morphogenic properties of neuronal LSD1-8a require switching off repressive activity and this negative modulation is mediated in vivo by phosphorylation of the Thr369b residue coded by exon E8a. Three-dimensional crystal structure analysis using a phospho-mimetic mutant (Thr369bAsp), indicate that phosphorylation affects the residues surrounding the exon E8a-coded amino acids, causing a local conformational change. We suggest that phosphorylation, without affecting demethylase activity, causes in neurons CoREST and HDAC1/2 corepressors detachment from LSD1-8a and impairs neuronal LSD1-8a repressive activity. In neurons, Thr369b phosphorylation is required for morphogenic activity, converting neuronal LSD1-8a in a dominant-negative isoform, challenging LSD1-mediated transcriptional repression on target genes.

Phosphorylation of neuronal Lysine-Specific Demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2 / E. Toffolo, F. Rusconi, L. Paganini, M. Tortorici, S. Pilotto, C. Heise, C. Verpelli, G. Tedeschi, E. Maffioli, C. Sala, A. Mattevi, E. Battaglioli. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - 128:5(2014 Mar), pp. 603-616.

Phosphorylation of neuronal Lysine-Specific Demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2

E. Toffolo;F. Rusconi;L. Paganini;C. Heise;C. Verpelli;G. Tedeschi;E. Maffioli;E. Battaglioli
2014

Abstract

Epigenetic mechanisms play important roles in brain development, orchestrating proliferation, differentiation, and morphogenesis. Lysine-Specific Demethylase 1 (LSD1 also known as KDM1A and AOF2) is a histone modifier involved in transcriptional repression, forming a stable core complex with the corepressors corepressor of REST (CoREST) and histone deacetylases (HDAC1/2). Importantly, in the mammalian CNS, neuronal LSD1-8a, an alternative splicing isoform of LSD1 including the mini-exon E8a, sets alongside LSD1 and is capable of enhancing neurite growth and morphogenesis. Here, we describe that the morphogenic properties of neuronal LSD1-8a require switching off repressive activity and this negative modulation is mediated in vivo by phosphorylation of the Thr369b residue coded by exon E8a. Three-dimensional crystal structure analysis using a phospho-mimetic mutant (Thr369bAsp), indicate that phosphorylation affects the residues surrounding the exon E8a-coded amino acids, causing a local conformational change. We suggest that phosphorylation, without affecting demethylase activity, causes in neurons CoREST and HDAC1/2 corepressors detachment from LSD1-8a and impairs neuronal LSD1-8a repressive activity. In neurons, Thr369b phosphorylation is required for morphogenic activity, converting neuronal LSD1-8a in a dominant-negative isoform, challenging LSD1-mediated transcriptional repression on target genes.
corepressor; epigenetics; KDM1A/LSD1; neuronal maturation; transcription
Settore BIO/10 - Biochimica
mar-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
Toffolo et al 05082013 JON.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Toffolo_et_al-2014-Journal_of_Neurochemistry.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/232497
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 78
social impact