Although evidence exists that chronic cocaine exposure during adulthood is associated with changes in BDNF expression, whether and how cocaine exposure during adolescence modulates BDNF is still unknown. To address this issue, we exposed rats to repeated cocaine injections from post-natal day (PD) 28 to PD 42, a period that roughly approximates adolescence in humans, and we carried out a detailed analysis of the BDNF system in the medial prefrontal cortex (mPFC) of rats sacrificed 3 d (PD 45) and 48 d (PD 90) after the last cocaine treatment. We found that developmental exposure to cocaine altered transcriptional and translational mechanisms governing neurotrophin expression. Total BDNF mRNA levels, in fact, were enhanced in the mPFC of PD 90 rats exposed to cocaine in adolescence, an effect sustained by changes in BDNF exon IV through the transcription factors CaRF and NF-kB. While a profound reduction of specific BDNF-related miRNAs (let7d, miR124 and miR132) may contribute to explaining the increased proBDNF levels, the up-regulation of the extracellular proteases tPA is indicative of increased processing leading to higher levels of released mBDNF. These changes were associated with increased activation of the trkB-Akt pathway resulting in enhanced pmTOR and pS6 kinase, which ultimately produced an up-regulation of Arc and a consequent reduction of GluA1 expression in the mPFC of PD 90 cocaine-treated rats. These findings demonstrate that developmental exposure to cocaine dynamically dysregulates BDNF and its signaling network in the mPFC of adult rats, providing novel mechanisms that may contribute to cocaine-induced changes in synaptic plasticity.

Prolonged abstinence from developmental cocaine exposure dysregulates BDNF and its signaling network in the medial prefrontal cortex of adult rats / G. Giannotti, L. Caffino, F. Calabrese, G. Racagni, M.A. Riva, F. Fumagalli. - In: INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY. - ISSN 1461-1457. - 17:4(2014 Apr), pp. 625-634.

Prolonged abstinence from developmental cocaine exposure dysregulates BDNF and its signaling network in the medial prefrontal cortex of adult rats

G. Giannotti
Primo
;
L. Caffino
Secondo
;
F. Calabrese;G. Racagni;M.A. Riva;F. Fumagalli
Ultimo
2014

Abstract

Although evidence exists that chronic cocaine exposure during adulthood is associated with changes in BDNF expression, whether and how cocaine exposure during adolescence modulates BDNF is still unknown. To address this issue, we exposed rats to repeated cocaine injections from post-natal day (PD) 28 to PD 42, a period that roughly approximates adolescence in humans, and we carried out a detailed analysis of the BDNF system in the medial prefrontal cortex (mPFC) of rats sacrificed 3 d (PD 45) and 48 d (PD 90) after the last cocaine treatment. We found that developmental exposure to cocaine altered transcriptional and translational mechanisms governing neurotrophin expression. Total BDNF mRNA levels, in fact, were enhanced in the mPFC of PD 90 rats exposed to cocaine in adolescence, an effect sustained by changes in BDNF exon IV through the transcription factors CaRF and NF-kB. While a profound reduction of specific BDNF-related miRNAs (let7d, miR124 and miR132) may contribute to explaining the increased proBDNF levels, the up-regulation of the extracellular proteases tPA is indicative of increased processing leading to higher levels of released mBDNF. These changes were associated with increased activation of the trkB-Akt pathway resulting in enhanced pmTOR and pS6 kinase, which ultimately produced an up-regulation of Arc and a consequent reduction of GluA1 expression in the mPFC of PD 90 cocaine-treated rats. These findings demonstrate that developmental exposure to cocaine dynamically dysregulates BDNF and its signaling network in the mPFC of adult rats, providing novel mechanisms that may contribute to cocaine-induced changes in synaptic plasticity.
Settore BIO/14 - Farmacologia
apr-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
Giannotti 2014.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 305.83 kB
Formato Adobe PDF
305.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/231885
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 49
social impact