Multi-armed bandit problems formalize the exploration-exploitation trade-offs arising in several industrially relevant applications, such as online advertisement and, more generally, recommendation systems. In many cases, however, these applications have a strong social component, whose integration in the bandit algorithm could lead to a dramatic performance increase. For instance, content may be served to a group of users by taking advantage of an underlying network of social relationships among them. In this paper, we introduce novel algorithmic approaches to the solution of such networked bandit problems. More specifically, we design and analyze a global recommendation strategy which allocates a bandit algorithm to each network node (user) and allows it to "share" signals (contexts and payoffs) with the neghboring nodes. We then derive two more scalable variants of this strategy based on different ways of clustering the graph nodes. We experimentally compare the algorithm and its variants to state-of-the-art methods for contextual bandits that do not use the relational information. Our experiments, carried out on synthetic and real-world datasets, show a consistent increase in prediction performance obtained by exploiting the network structure.
A gang of bandits / N. Cesa-Bianchi, C. Gentile, G. Zappella (ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS). - In: Advances in neural information processing systems / [a cura di] C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger. - [s.l] : Neural information processing systems foundation, 2013. - pp. 1-9 (( convegno Conference on Neural Information Processing Systems tenutosi a South Lake Tahoe nel 2013.
A gang of bandits
N. Cesa-Bianchi;G. Zappella
2013
Abstract
Multi-armed bandit problems formalize the exploration-exploitation trade-offs arising in several industrially relevant applications, such as online advertisement and, more generally, recommendation systems. In many cases, however, these applications have a strong social component, whose integration in the bandit algorithm could lead to a dramatic performance increase. For instance, content may be served to a group of users by taking advantage of an underlying network of social relationships among them. In this paper, we introduce novel algorithmic approaches to the solution of such networked bandit problems. More specifically, we design and analyze a global recommendation strategy which allocates a bandit algorithm to each network node (user) and allows it to "share" signals (contexts and payoffs) with the neghboring nodes. We then derive two more scalable variants of this strategy based on different ways of clustering the graph nodes. We experimentally compare the algorithm and its variants to state-of-the-art methods for contextual bandits that do not use the relational information. Our experiments, carried out on synthetic and real-world datasets, show a consistent increase in prediction performance obtained by exploiting the network structure.File | Dimensione | Formato | |
---|---|---|---|
5006-a-gang-of-bandits.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.