CD is an immune-mediated enteropathy caused by the ingestion of wheat gluten. The modification of gluten by intestinal tTGase plays a crucial role in CD pathogenesis. In this study, we observed that extensive transamidation of wheat flour with K-C2H5 by mTGase yielded spf and K-gliadins fractions. By Western blot, we found that these modifications were associated with strongly reduced immune cross-reactivity. With the use of DQ8 tg mice as a model of gluten sensitivity, we observed a dramatic reduction in IFNγ production in gliadin-specific spleen cells challenged with spf and K-gliadins in vitro (n=12; median values: 813 vs. 29 and 99; control vs. spf and K-gliadins, P=0.012 for spf, and P=0.003 for K-gliadins). For spf, we also observed an increase in the IL-10/IFNγ protein ratio (n=12; median values: 0.3 vs. 4.7; control vs. spf, P=0.005). In intestinal biopsies from CD patients challenged in vitro with gliadins (n=10), we demonstrated further that K-gliadins dramatically reduced the levels of antigen-specific IFNγ mRNA in all specimens responsive to native gliadins (four of 10; P<0.05). As cytotoxic effects have been described for gliadins, we also studied GST and caspase-3 activities using the enterocytic Caco-2 cell line. We found that neither activities were modified by flour transamidation. Our results indicate that K-C2H5 cross-linking via mTGase specifically affects gliadin immunogenicity, reversing the inducible inflammatory response in models of gluten sensitivity without affecting other aspects of the biological activity of gliadins.
Selective inhibition of the gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase / E. Lombardi, P. Bergamo, F. Maurano, G. Bozzella, D. Luongo, G. Mazzarella, V. Rotondi Aufiero, G. Iaquinto, M. Rossi. - In: JOURNAL OF LEUKOCYTE BIOLOGY. - ISSN 0741-5400. - 93:4(2013 Apr), pp. 479-488. [10.1189/jlb.0412182]
Selective inhibition of the gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase
E. LombardiPrimo
;
2013
Abstract
CD is an immune-mediated enteropathy caused by the ingestion of wheat gluten. The modification of gluten by intestinal tTGase plays a crucial role in CD pathogenesis. In this study, we observed that extensive transamidation of wheat flour with K-C2H5 by mTGase yielded spf and K-gliadins fractions. By Western blot, we found that these modifications were associated with strongly reduced immune cross-reactivity. With the use of DQ8 tg mice as a model of gluten sensitivity, we observed a dramatic reduction in IFNγ production in gliadin-specific spleen cells challenged with spf and K-gliadins in vitro (n=12; median values: 813 vs. 29 and 99; control vs. spf and K-gliadins, P=0.012 for spf, and P=0.003 for K-gliadins). For spf, we also observed an increase in the IL-10/IFNγ protein ratio (n=12; median values: 0.3 vs. 4.7; control vs. spf, P=0.005). In intestinal biopsies from CD patients challenged in vitro with gliadins (n=10), we demonstrated further that K-gliadins dramatically reduced the levels of antigen-specific IFNγ mRNA in all specimens responsive to native gliadins (four of 10; P<0.05). As cytotoxic effects have been described for gliadins, we also studied GST and caspase-3 activities using the enterocytic Caco-2 cell line. We found that neither activities were modified by flour transamidation. Our results indicate that K-C2H5 cross-linking via mTGase specifically affects gliadin immunogenicity, reversing the inducible inflammatory response in models of gluten sensitivity without affecting other aspects of the biological activity of gliadins.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.