Recent compelling evidence has suggested that the glutamate system is a primary mediator of psychiatric pathology and also a target for rapid-acting antidepressants. Clinical research in mood and anxiety disorders has shown alterations in levels, clearance, and metabolism of glutamate and consistent volumetric changes in brain areas where glutamate neurons predominate. In parallel, preclinical studies with rodent stress and depression models have found dendritic remodeling and synaptic spines reduction in corresponding areas, suggesting these as major factors in psychopathology. Enhancement of glutamate release/transmission, in turn induced by stress/glucocorticoids, seems crucial for structural/functional changes. Understanding mechanisms of maladaptive plasticity may allow identification of new targets for drugs and therapies. Interestingly, traditional monoaminergic-based antidepressants have been repeatedly shown to interfere with glutamate system function, starting with modulation of N-methyl-D-aspartate (NMDA) receptors. Subsequently, it has been shown that antidepressants reduce glutamate release and synaptic transmission; in particular, it was found antidepressants prevent the acute stress-induced enhancement of glutamate release. Additional studies have shown that antidepressants may partly reverse the maladaptive changes in synapses/circuitry in stress and depression models. Finally, a number of studies over the years have shown that these drugs regulate glutamate receptors, reducing the function of NMDA receptors, potentiating the function of α-amino-3-hydroxy-5- methyl-4-isoxazole-propionic acid receptors, and, more recently, exerting variable effects on different subtypes of metabotropic glutamate receptors. The development of NMDA receptor antagonists has opened new avenues for glutamatergic, rapid acting, antidepressants, while additional targets in the glutamate synapse await development of new compounds for better, faster antidepressant action.

The action of antidepressants on the glutamate system : regulation of glutamate release and glutamate receptors / L. Musazzi, G. Treccani, A. Mallei, M. Popoli. - In: BIOLOGICAL PSYCHIATRY. - ISSN 0006-3223. - 73:12(2013 Jun 15), pp. 1180-1188.

The action of antidepressants on the glutamate system : regulation of glutamate release and glutamate receptors

L. Musazzi
Primo
;
G. Treccani
Secondo
;
A. Mallei
Penultimo
;
M. Popoli
Ultimo
2013-06-15

Abstract

Recent compelling evidence has suggested that the glutamate system is a primary mediator of psychiatric pathology and also a target for rapid-acting antidepressants. Clinical research in mood and anxiety disorders has shown alterations in levels, clearance, and metabolism of glutamate and consistent volumetric changes in brain areas where glutamate neurons predominate. In parallel, preclinical studies with rodent stress and depression models have found dendritic remodeling and synaptic spines reduction in corresponding areas, suggesting these as major factors in psychopathology. Enhancement of glutamate release/transmission, in turn induced by stress/glucocorticoids, seems crucial for structural/functional changes. Understanding mechanisms of maladaptive plasticity may allow identification of new targets for drugs and therapies. Interestingly, traditional monoaminergic-based antidepressants have been repeatedly shown to interfere with glutamate system function, starting with modulation of N-methyl-D-aspartate (NMDA) receptors. Subsequently, it has been shown that antidepressants reduce glutamate release and synaptic transmission; in particular, it was found antidepressants prevent the acute stress-induced enhancement of glutamate release. Additional studies have shown that antidepressants may partly reverse the maladaptive changes in synapses/circuitry in stress and depression models. Finally, a number of studies over the years have shown that these drugs regulate glutamate receptors, reducing the function of NMDA receptors, potentiating the function of α-amino-3-hydroxy-5- methyl-4-isoxazole-propionic acid receptors, and, more recently, exerting variable effects on different subtypes of metabotropic glutamate receptors. The development of NMDA receptor antagonists has opened new avenues for glutamatergic, rapid acting, antidepressants, while additional targets in the glutamate synapse await development of new compounds for better, faster antidepressant action.
antidepressive agents; brain; drug design; glutamic acid; humans; receptors; glutamate
Settore BIO/14 - Farmacologia
Settore BIO/13 - Biologia Applicata
Article (author)
File in questo prodotto:
File Dimensione Formato  
BPS13.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/230417
Citazioni
  • ???jsp.display-item.citation.pmc??? 52
  • Scopus 124
  • ???jsp.display-item.citation.isi??? 114
social impact