Face recognition in presence of either occlusions, illumination changes or large expression variations is still an open problem. This paper addresses this issue presenting a new local-based face recognition system that combines weak classifiers yielding a strong one. The method relies on sparse approximation using dictionaries built on a pool of local features extracted from automatically cropped images. Experiments on the AR database show the effectiveness of our method, which outperforms current state-of-the art techniques.
Face recognition in uncontrolled conditions using sparse representation and local features / A. Adamo, G. Grossi, R. Lanzarotti (LECTURE NOTES IN COMPUTER SCIENCE). - In: Image analysis and processing – ICIAP 2013 / [a cura di] A. Petrosino. - Heidelberg : Springer, 2013 Sep. - ISBN 9783642411830. - pp. 31-40 (( Intervento presentato al 17. convegno International Conference on Image Analysis and Processing tenutosi a Napoli nel 2013.
Face recognition in uncontrolled conditions using sparse representation and local features
G. GrossiPrimo
;R. Lanzarotti
2013
Abstract
Face recognition in presence of either occlusions, illumination changes or large expression variations is still an open problem. This paper addresses this issue presenting a new local-based face recognition system that combines weak classifiers yielding a strong one. The method relies on sparse approximation using dictionaries built on a pool of local features extracted from automatically cropped images. Experiments on the AR database show the effectiveness of our method, which outperforms current state-of-the art techniques.File | Dimensione | Formato | |
---|---|---|---|
ICIAP2013.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
164 kB
Formato
Adobe PDF
|
164 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Adamo2013_Chapter_FaceRecognitionInUncontrolledC.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
221.33 kB
Formato
Adobe PDF
|
221.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.