The computational investigation of a biological system often requires the execution of a large number of simulations to analyze its dynamics, and to derive useful knowledge on its behavior under physiological and perturbed conditions. This analysis usually turns out into very high computational costs when simulations are run on central processing units (CPUs), therefore demanding a shift to the use of high-performance processors. In this work we present a simulator of biological systems, called cupSODA, which exploits the higher memory bandwidth and computational capability of graphics processing units (GPUs). This software allows to execute parallel simulations of the dynamics of biological systems, by first deriving a set of ordinary differential equations from reaction-based mechanistic models defined according to the mass-action kinetics, and then exploiting the numerical integration algorithm LSODA. We show that cupSODA can achieve a 112 × speedup on GPUs with respect to equivalent executions of LSODA on CPUs.

cupSODA: a CUDA-powered simulator of mass-action kinetics / M.S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini - In: Parallel computing technologies : 12th international conference, PaCT 2013, St. Petersburg, Russia, september 30-october 4, 2013 : proceedings / [a cura di] V. Malyshkin. - Heidelberg : Springer, 2013. - ISBN 9783642399572. - pp. 344-357 (( Intervento presentato al 12th. convegno International Conference on Parallel Computing Technologies (PaCT 2013) tenutosi a St. Petersburg, Russia nel 2013 [10.1007/978-3-642-39958-9_32].

cupSODA: a CUDA-powered simulator of mass-action kinetics

D. Besozzi
Secondo
;
2013

Abstract

The computational investigation of a biological system often requires the execution of a large number of simulations to analyze its dynamics, and to derive useful knowledge on its behavior under physiological and perturbed conditions. This analysis usually turns out into very high computational costs when simulations are run on central processing units (CPUs), therefore demanding a shift to the use of high-performance processors. In this work we present a simulator of biological systems, called cupSODA, which exploits the higher memory bandwidth and computational capability of graphics processing units (GPUs). This software allows to execute parallel simulations of the dynamics of biological systems, by first deriving a set of ordinary differential equations from reaction-based mechanistic models defined according to the mass-action kinetics, and then exploiting the numerical integration algorithm LSODA. We show that cupSODA can achieve a 112 × speedup on GPUs with respect to equivalent executions of LSODA on CPUs.
Settore INF/01 - Informatica
2013
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/230224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact