We analyzed the discharges of 77 single neurons located in the rostral ventrolateral medulla (RVLM, n = 25), caudal ventrolateral medulla (CVLM, n = 18), lateral tegmental field (LTF, n = 19) and caudal raphe nuclei (n = 15). These recordings were made from 36 vagotomized and sinoaortic denervated cats that were either decerebrate (n = 27) or anesthetized with urethane (n = 9) and from 3 decerebrate cats with intact sinoartic and vagal nerves. These neurons were classified as sympathetic-related (n = 61) if spike triggered averaging showed that their naturally occurring discharges were correlated to either the cardiac related (2-6 Hz) or a faster (10 Hz) oscillation in inferior cardiac sympathetic nerve discharge. Neurons were classified as sympathetic-unrelated (n = 16) if they lacked these characteristics. We used autoregressive spectral techniques to detect additional slower oscillations hidden in the variability of neuronal discharge and possibly correlated to the oscillations of systolic arterial pressure (SAP). This analysis revealed the existence of a low frequency (LF) oscillation (0.12 +/- 0.02 Hz) in the discharges of 36 sympathetic-related and 9 sympathetic-unrelated neurons. In relation to 35 neurons in 21 animals there was also an LF component in SAP variability. In 29 instances the LF neuronal discharges and SAP variabilities were significantly correlated. In addition, there was a high frequency (HF) oscillation (0.34 +/- 0.06 Hz) in the discharges of 59 medullary neurons. In 56 cases the HF in neuronal discharge variability cohered to that in SAP variability. These data are the first to demonstrate the existence of an LF component in the discharges of individual medullary neurons, at least some of which were likely to be involved in the regulation of the cardiovascular system. Since these oscillations were evident in cats with section of sinoaortic and vagal nerves, they likely reflect central rhythmogenic properties.

Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system / N. Montano, T. Gnecchi-Ruscone, A. Porta, F. Lombardi, A. Malliani, S. Barman. - In: JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM. - ISSN 0165-1838. - 57:1-2(1996 Feb), pp. 116-122.

Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system

N. Montano
Primo
;
A. Porta;F. Lombardi;A. Malliani
Penultimo
;
1996

Abstract

We analyzed the discharges of 77 single neurons located in the rostral ventrolateral medulla (RVLM, n = 25), caudal ventrolateral medulla (CVLM, n = 18), lateral tegmental field (LTF, n = 19) and caudal raphe nuclei (n = 15). These recordings were made from 36 vagotomized and sinoaortic denervated cats that were either decerebrate (n = 27) or anesthetized with urethane (n = 9) and from 3 decerebrate cats with intact sinoartic and vagal nerves. These neurons were classified as sympathetic-related (n = 61) if spike triggered averaging showed that their naturally occurring discharges were correlated to either the cardiac related (2-6 Hz) or a faster (10 Hz) oscillation in inferior cardiac sympathetic nerve discharge. Neurons were classified as sympathetic-unrelated (n = 16) if they lacked these characteristics. We used autoregressive spectral techniques to detect additional slower oscillations hidden in the variability of neuronal discharge and possibly correlated to the oscillations of systolic arterial pressure (SAP). This analysis revealed the existence of a low frequency (LF) oscillation (0.12 +/- 0.02 Hz) in the discharges of 36 sympathetic-related and 9 sympathetic-unrelated neurons. In relation to 35 neurons in 21 animals there was also an LF component in SAP variability. In 29 instances the LF neuronal discharges and SAP variabilities were significantly correlated. In addition, there was a high frequency (HF) oscillation (0.34 +/- 0.06 Hz) in the discharges of 59 medullary neurons. In 56 cases the HF in neuronal discharge variability cohered to that in SAP variability. These data are the first to demonstrate the existence of an LF component in the discharges of individual medullary neurons, at least some of which were likely to be involved in the regulation of the cardiovascular system. Since these oscillations were evident in cats with section of sinoaortic and vagal nerves, they likely reflect central rhythmogenic properties.
Autoregressive spectral analysis; Caudal raphe nucleus; Caudal ventrolateral medulla; Lateral tegmental field; Rostral ventrolateral medulla
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
Settore MED/09 - Medicina Interna
Settore MED/11 - Malattie dell'Apparato Cardiovascolare
feb-1996
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/22933
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 81
social impact