Saposin B (Sap B) is a member of a family of four small glycoproteins, Sap A, B, C, and D. Like the other three saposins, Sap B plays a physiological role in the lysosomal degradation of sphingolipids (SLs). Although the interaction of Sap B with SLs has been investigated extensively, that with the main membrane lipid components, namely phospholipids and cholesterol (Chol), is scarcely known. Using large unilamellar vesicles (LUVs) as membrane models, we have now found that Sap B simultaneously extracts from the lipid surface neutral [phosphatidylcholine (PC)] and anionic [phosphatidylinositol (PI)] phospholipids, fewer SLs [ganglioside GM1 (GM1) or cerebroside sulfate (CS)], and no Chol. More PI than SL (GM1 or CS) was solubilized from LUVs containing equal amounts of PI and SLs. An increase in PI level had a poor effect on the Sap B-induced solubilization of GM1 or CS but strongly inhibited that of PC. Sap B was able not only to bind, but also to transfer phospholipids between lipid surfaces. Both the phospholipid binding and transfer activities were optimal at low pH values. These results represent the first biochemical analysis of the Sap B interaction with phospholipids. The capacity of Sap B to bind and transfer phospholipids occurs under conditions mimicking the interior of the late endosomal/lysosomal compartment and thus might have physiological relevance.

Saposin B binds and transfers phospholipids / F. Ciaffoni, M. Tatti, A. Boe, R. Salvioli, A. Fluharty, S. Sonnino, A.M. Vaccaro. - In: JOURNAL OF LIPID RESEARCH. - ISSN 0022-2275. - 47:5(2006 May), pp. 1045-1053. [10.1194/jlr.M500547-JLR200]

Saposin B binds and transfers phospholipids

S. Sonnino
Penultimo
;
2006

Abstract

Saposin B (Sap B) is a member of a family of four small glycoproteins, Sap A, B, C, and D. Like the other three saposins, Sap B plays a physiological role in the lysosomal degradation of sphingolipids (SLs). Although the interaction of Sap B with SLs has been investigated extensively, that with the main membrane lipid components, namely phospholipids and cholesterol (Chol), is scarcely known. Using large unilamellar vesicles (LUVs) as membrane models, we have now found that Sap B simultaneously extracts from the lipid surface neutral [phosphatidylcholine (PC)] and anionic [phosphatidylinositol (PI)] phospholipids, fewer SLs [ganglioside GM1 (GM1) or cerebroside sulfate (CS)], and no Chol. More PI than SL (GM1 or CS) was solubilized from LUVs containing equal amounts of PI and SLs. An increase in PI level had a poor effect on the Sap B-induced solubilization of GM1 or CS but strongly inhibited that of PC. Sap B was able not only to bind, but also to transfer phospholipids between lipid surfaces. Both the phospholipid binding and transfer activities were optimal at low pH values. These results represent the first biochemical analysis of the Sap B interaction with phospholipids. The capacity of Sap B to bind and transfer phospholipids occurs under conditions mimicking the interior of the late endosomal/lysosomal compartment and thus might have physiological relevance.
Phospholipid binding; Phospholipid transfer; Saposin-membrane interaction
Settore BIO/10 - Biochimica
mag-2006
http://www.jlr.org/cgi/reprint/47/5/1045
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/22849
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact