As part of a more extensive investigation on structural features of different low-molecular-weight heparins (LMWHs) that can affect their biological activities, Enoxaparin, Tinzaparin and Dalteparin were characterised with regards to the distribution of different chain length oligosaccharides as determined by size-exclusion (SE) chromatography, as well as their structure as defined by 2D-NMR spectra (HSQC). The three LMWHs were also fractionated into high affinity (HA) and no affinity (NA) pools with regards to their ability to bind antithrombin (AT). The HA fractions were further subfractionated and characterised. For the parent LMWHs and selected fractions, molecular weight parameters were measured using a SE chromatographic system with a triple detector (TDA) to obtain absolute molecular weights. The SE chromatograms clearly indicate that Enoxaparin is consistently richer in shorter oligosaccharides than Tinzaparin and Dalteparin. Besides providing the content of terminal groups and individual glucosamine and uronic acid residues with different sulfate substituents, the HSQC-NMR spectra permitted us to evaluate and correlate the content of the pentasaccharide, AT-binding sequence A-G-A*-I-A (AT-bs) through quantification of signals of the disaccharide sequence G-A*. Whereas the percent content of HA species is approximately the same for the three LMWHs, substantial differences were observed for the chain distribution of AT-bs as a function of length, with the AT-bs being preferentially contained in the longest chains of each LMWH. The above information will be useful in establishing structure-activity relationships currently under way. This study is therefore critical for establishing correlations between structural features of LMWHs and their AT-mediated anticoagulant activity

Structural features of low-molecular-weight heparins affecting their affinity to antithrombin / A. Bisio, D. Vecchietti, L. Citterio, M. Guerrini, R. Raman, S. Bertini, G. Eisele, A. Naggi, R. Sasisekharan, G. Torri. - In: THROMBOSIS AND HAEMOSTASIS. - ISSN 0340-6245. - 102:5(2009), pp. 865-873. [10.1160/TH09-02-0081]

Structural features of low-molecular-weight heparins affecting their affinity to antithrombin

D. Vecchietti
Secondo
;
2009

Abstract

As part of a more extensive investigation on structural features of different low-molecular-weight heparins (LMWHs) that can affect their biological activities, Enoxaparin, Tinzaparin and Dalteparin were characterised with regards to the distribution of different chain length oligosaccharides as determined by size-exclusion (SE) chromatography, as well as their structure as defined by 2D-NMR spectra (HSQC). The three LMWHs were also fractionated into high affinity (HA) and no affinity (NA) pools with regards to their ability to bind antithrombin (AT). The HA fractions were further subfractionated and characterised. For the parent LMWHs and selected fractions, molecular weight parameters were measured using a SE chromatographic system with a triple detector (TDA) to obtain absolute molecular weights. The SE chromatograms clearly indicate that Enoxaparin is consistently richer in shorter oligosaccharides than Tinzaparin and Dalteparin. Besides providing the content of terminal groups and individual glucosamine and uronic acid residues with different sulfate substituents, the HSQC-NMR spectra permitted us to evaluate and correlate the content of the pentasaccharide, AT-binding sequence A-G-A*-I-A (AT-bs) through quantification of signals of the disaccharide sequence G-A*. Whereas the percent content of HA species is approximately the same for the three LMWHs, substantial differences were observed for the chain distribution of AT-bs as a function of length, with the AT-bs being preferentially contained in the longest chains of each LMWH. The above information will be useful in establishing structure-activity relationships currently under way. This study is therefore critical for establishing correlations between structural features of LMWHs and their AT-mediated anticoagulant activity
Antithrombin III ; Binding Sites ; Carbohydrate Conformation ; Carbohydrate Sequence ; Chromatography, Affinity ; Chromatography, Gel ; Dalteparin ; Disaccharides ; Enoxaparin ; Heparin, Low-Molecular-Weight ; Humans ; Molecular Sequence Data ; Molecular Structure ; Molecular Weight ; Nuclear Magnetic Resonance, Biomolecular ; Structure-Activity Relationship
Settore BIO/10 - Biochimica
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/227571
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 69
social impact