To assure an efficient management and planning of irrigation water resources, an accurate computation of actual evapotranspiration (ET) from cropped surfaces is needed. ET models can be classified in two categories: “direct” methods, based on the original Penman-Monteith (P-M) equation, in which the canopy resistance rc is modelled, and “indirect” methods, based on the calculation of ET for a well-watered reference grass (ET0) with constant rc multiplied by a crop coefficient that represents the relative rate of ET from a specific crop and condition to that of the reference. This last procedure, standardized by FAO-56 bulletin, is the most widely adopted for the estimation of ET. However, in literature there are evidences that direct methods (P-M models with rc modelled) are still the most performing. In fact, for indirect methods, errors introduced by the calculation of ET0 considering a constant rc for reference crop and by the estimation of the crop coefficient, which actually integrates several physical and biological factors, can be relevant. This study evaluates the performance of different models for the estimation of ET for a maize agro-ecosystem in the Padana Plain (Northern Italy). The following models have been considered: 1) the “one-step” P-M model using a constant daily canopy resistance following the classical Monteith approach; 2) the “one-step” P-M model using a variable canopy resistance based on the approach of Katerji-Perrier, in which rc is calculated as a function of climate variables, aerodynamic resistance, vegetation type and its water status; 3) the “two-step” Shuttleworth model as updated by Shuttleworth and Gurney (1990), which combines one-dimensional models of crop transpiration and of soil evaporation, where canopy and soil surface resistances regulate the heat and mass transfer at the plant and soil surfaces, and aerodynamic resistances regulate those between these surfaces and the atmospheric boundary layer; 5) the indirect “single crop coefficient” method proposed by FAO-56; 6) the indirect “double crop coefficient” method proposed by FAO-56, which allows the separation of soil evaporation and crop transpiration. Latent heat fluxes measured in 2006, 2010 and 2011 in an experimental maize field by eddy-covariance are used to evaluate the models accuracy. Crop, soil and meteo data monitored contextually are used for different models implementation. Data from the closest standard agro-meteorological station are adopted in the ET0 calculation for indirect methods. Results of this work confirm what reported by other authors in the literature, demonstrating that the calculation of crop evapotranspiration by direct method is more accurate than the use of indirect methods for both irrigated (2006, 2010) and rainfed (2011) conditions.

Performance of evapotranspiration models for a maize agro-ecosystem : from bare soil to maximum coverage in irrigated and rainfed conditions / O. Gharsallah, A. Facchi, C. Gandolfi. - In: GEOPHYSICAL RESEARCH ABSTRACTS. - ISSN 1607-7962. - 14:(2012), pp. EGU2012-8091.1-EGU2012-8091.1. (Intervento presentato al convegno European geosciences union general assembly tenutosi a Vienna nel 2012).

Performance of evapotranspiration models for a maize agro-ecosystem : from bare soil to maximum coverage in irrigated and rainfed conditions

O. Gharsallah
Primo
;
A. Facchi
Secondo
;
C. Gandolfi
Ultimo
2012

Abstract

To assure an efficient management and planning of irrigation water resources, an accurate computation of actual evapotranspiration (ET) from cropped surfaces is needed. ET models can be classified in two categories: “direct” methods, based on the original Penman-Monteith (P-M) equation, in which the canopy resistance rc is modelled, and “indirect” methods, based on the calculation of ET for a well-watered reference grass (ET0) with constant rc multiplied by a crop coefficient that represents the relative rate of ET from a specific crop and condition to that of the reference. This last procedure, standardized by FAO-56 bulletin, is the most widely adopted for the estimation of ET. However, in literature there are evidences that direct methods (P-M models with rc modelled) are still the most performing. In fact, for indirect methods, errors introduced by the calculation of ET0 considering a constant rc for reference crop and by the estimation of the crop coefficient, which actually integrates several physical and biological factors, can be relevant. This study evaluates the performance of different models for the estimation of ET for a maize agro-ecosystem in the Padana Plain (Northern Italy). The following models have been considered: 1) the “one-step” P-M model using a constant daily canopy resistance following the classical Monteith approach; 2) the “one-step” P-M model using a variable canopy resistance based on the approach of Katerji-Perrier, in which rc is calculated as a function of climate variables, aerodynamic resistance, vegetation type and its water status; 3) the “two-step” Shuttleworth model as updated by Shuttleworth and Gurney (1990), which combines one-dimensional models of crop transpiration and of soil evaporation, where canopy and soil surface resistances regulate the heat and mass transfer at the plant and soil surfaces, and aerodynamic resistances regulate those between these surfaces and the atmospheric boundary layer; 5) the indirect “single crop coefficient” method proposed by FAO-56; 6) the indirect “double crop coefficient” method proposed by FAO-56, which allows the separation of soil evaporation and crop transpiration. Latent heat fluxes measured in 2006, 2010 and 2011 in an experimental maize field by eddy-covariance are used to evaluate the models accuracy. Crop, soil and meteo data monitored contextually are used for different models implementation. Data from the closest standard agro-meteorological station are adopted in the ET0 calculation for indirect methods. Results of this work confirm what reported by other authors in the literature, demonstrating that the calculation of crop evapotranspiration by direct method is more accurate than the use of indirect methods for both irrigated (2006, 2010) and rainfed (2011) conditions.
Settore AGR/08 - Idraulica Agraria e Sistemazioni Idraulico-Forestali
2012
European geosciences union
http://meetingorganizer.copernicus.org/EGU2012/EGU2012-8091.pdf
Article (author)
File in questo prodotto:
File Dimensione Formato  
EGU2012-8091.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 42.44 kB
Formato Adobe PDF
42.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/224930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact