Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20 wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K 2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total alcohols is obtained at a K/Mo molar ratio of 0.21 over the active carbon supported Mo2C (20 wt%).

Supported molybdenum carbide for higher alcohol synthesis from syngas / Q. Wu, J.M. Christensen, G.L. Chiarello, L.D.L. Duchstein, J.B. Wagner, B. Temel, J. Grunwaldt, A.D. Jensen. - In: CATALYSIS TODAY. - ISSN 0920-5861. - 215(2013), pp. 162-168. [10.1016/j.cattod.2013.03.002]

Supported molybdenum carbide for higher alcohol synthesis from syngas

G.L. Chiarello;
2013

Abstract

Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20 wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K 2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total alcohols is obtained at a K/Mo molar ratio of 0.21 over the active carbon supported Mo2C (20 wt%).
Alcohol synthesis; CO hydrogenation; Molybdenum carbide; Supported catalysts; Syngas
Settore ING-IND/25 - Impianti Chimici
Settore CHIM/02 - Chimica Fisica
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/224671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
social impact