RATIONALE: Lung volume available for ventilation is markedly decreased during acute respiratory distress syndrome. Body positioning may contribute to increase lung volume and partial verticalization is simple to perform. This study evaluated whether verticalization had parallel effects on oxygenation and end expiratory lung volume (EELV). METHODS: Prospective multicenter study in 40 mechanically ventilated patients with ALI/ARDS in five university hospital MICUs. We evaluated four 45-min successive trunk position epochs (supine slightly elevated at 15°; semi recumbent with trunk elevated at 45°; seated with trunk elevated at 60° and legs down at 45°; back to supine). Arterial blood gases, EELV measured using the nitrogen washin/washout, and static compliance were measured. Responders were defined by a PaO₂/FiO₂ increase >20 % between supine and seated position. Results are median [25th-75th percentiles]. RESULTS: With median PEEP = 10 cmH₂O, verticalization increased lung volume but only responders (13 patients, 32 %) had a significant increase in EELV/PBW (predicted body weight) compared to baseline. This increase persisted at least partially when patients were positioned back to supine. Responders had a lower EELV/PBW supine [14 mL/kg (13-15) vs. 18 mL/kg (15-27) (p = 0.005)] and a lower compliance [30 mL/cmH₂O (22-38) vs. 42 (30-46) (p = 0.01)] than non-responders. Strain decreased with verticalization for responders. EELV/PBW increase and PaO₂/FiO₂ increase were not correlated. DISCUSSION: Verticalization is easily achieved and improves oxygenation in approximately 32 % of the patients together with an increase in EELV. Nonetheless, effect of verticalization on EELV/PBW is not predictable by PaO₂/FiO₂ increase, its monitoring may be helpful for strain optimiza

Effect of different seated positions on lung volume and oxygenation in acute respiratory distress syndrome / J. Dellamonica, N. Lerolle, C. Sargentini, S. Hubert, G. Beduneau, F. Di Marco, A. Mercat, J.L. Diehl, J.C.M. Richard, G. Bernardin, L. Brochard. - In: INTENSIVE CARE MEDICINE. - ISSN 0342-4642. - 39:6(2013 Jun), pp. 1121-1127. [10.1007/s00134-013-2827-x]

Effect of different seated positions on lung volume and oxygenation in acute respiratory distress syndrome

F. Di Marco;
2013

Abstract

RATIONALE: Lung volume available for ventilation is markedly decreased during acute respiratory distress syndrome. Body positioning may contribute to increase lung volume and partial verticalization is simple to perform. This study evaluated whether verticalization had parallel effects on oxygenation and end expiratory lung volume (EELV). METHODS: Prospective multicenter study in 40 mechanically ventilated patients with ALI/ARDS in five university hospital MICUs. We evaluated four 45-min successive trunk position epochs (supine slightly elevated at 15°; semi recumbent with trunk elevated at 45°; seated with trunk elevated at 60° and legs down at 45°; back to supine). Arterial blood gases, EELV measured using the nitrogen washin/washout, and static compliance were measured. Responders were defined by a PaO₂/FiO₂ increase >20 % between supine and seated position. Results are median [25th-75th percentiles]. RESULTS: With median PEEP = 10 cmH₂O, verticalization increased lung volume but only responders (13 patients, 32 %) had a significant increase in EELV/PBW (predicted body weight) compared to baseline. This increase persisted at least partially when patients were positioned back to supine. Responders had a lower EELV/PBW supine [14 mL/kg (13-15) vs. 18 mL/kg (15-27) (p = 0.005)] and a lower compliance [30 mL/cmH₂O (22-38) vs. 42 (30-46) (p = 0.01)] than non-responders. Strain decreased with verticalization for responders. EELV/PBW increase and PaO₂/FiO₂ increase were not correlated. DISCUSSION: Verticalization is easily achieved and improves oxygenation in approximately 32 % of the patients together with an increase in EELV. Nonetheless, effect of verticalization on EELV/PBW is not predictable by PaO₂/FiO₂ increase, its monitoring may be helpful for strain optimiza
nitrogen washout/washin ; end expiratory lung volume ; functional residual capacity ; acute respiratory distress syndrome ; mechanical ventilation ; positioning ; recruitment ; gas exchange
Settore MED/10 - Malattie dell'Apparato Respiratorio
Settore MED/41 - Anestesiologia
giu-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
10.1007_s00134-013-2827-x.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 299.85 kB
Formato Adobe PDF
299.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/224455
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 40
social impact