Saccharomyces cerevisiae cells with a single double-strand break (DSB) activate the ATR/Mec1-dependent checkpoint response as a consequence of extensive ssDNA accumulation. The recombination factor Tid1/Rdh54, a member of the Swi2-like family proteins, has an ATPase activity and may contribute to the remodelling of nucleosomes on DNA. Tid1 dislocates Rad51 recombinase from dsDNA, can unwind and supercoil DNA filaments, and has been implicated in checkpoint adaptation from a G2/M arrest induced by an unrepaired DSB. Here we show that both ATR/Mec1 and Chk2/Rad53 kinases are implicated in the phosphorylation of Tid1 in the presence of DNA damage, indicating that the protein is regulated during the DNA damage response. We show that Tid1 ATPase activity is dispensable for its phosphorylation and for its recruitment near a DSB, but it is required to switch off Rad53 activation and for checkpoint adaptation. Mec1 and Rad53 kinases, together with Rad51 recombinase, are also implicated in the hyper-phosphorylation of the ATPase defective Tid1-K318R variant and in the efficient binding of the protein to the DSB site. In summary, Tid1 is a novel target of the DNA damage checkpoint pathway that is also involved in checkpoint adaptation.

Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast / M. Ferrari, B.T. Nachimuthu, R.A. Donnianni, H. Klein, A. Pellicioli. - In: DNA REPAIR. - ISSN 1568-7864. - 12:5(2013 May 01), pp. 347-355.

Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast

M. Ferrari
Primo
;
A. Pellicioli
Ultimo
2013

Abstract

Saccharomyces cerevisiae cells with a single double-strand break (DSB) activate the ATR/Mec1-dependent checkpoint response as a consequence of extensive ssDNA accumulation. The recombination factor Tid1/Rdh54, a member of the Swi2-like family proteins, has an ATPase activity and may contribute to the remodelling of nucleosomes on DNA. Tid1 dislocates Rad51 recombinase from dsDNA, can unwind and supercoil DNA filaments, and has been implicated in checkpoint adaptation from a G2/M arrest induced by an unrepaired DSB. Here we show that both ATR/Mec1 and Chk2/Rad53 kinases are implicated in the phosphorylation of Tid1 in the presence of DNA damage, indicating that the protein is regulated during the DNA damage response. We show that Tid1 ATPase activity is dispensable for its phosphorylation and for its recruitment near a DSB, but it is required to switch off Rad53 activation and for checkpoint adaptation. Mec1 and Rad53 kinases, together with Rad51 recombinase, are also implicated in the hyper-phosphorylation of the ATPase defective Tid1-K318R variant and in the efficient binding of the protein to the DSB site. In summary, Tid1 is a novel target of the DNA damage checkpoint pathway that is also involved in checkpoint adaptation.
Double strand break (DSB); DNA recombination; Checkpoint adaptation; DNA damage
Settore BIO/11 - Biologia Molecolare
Settore BIO/18 - Genetica
1-mag-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ferrarietal2013.pdf

accesso riservato

Descrizione: Articolo pubblicato
Tipologia: Publisher's version/PDF
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/223644
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact