Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) A, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to an high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch– Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0 (b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0 (c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.

High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material / G.D. Gatta, P. Lotti, M. Merlini, H.P. Liermann, M. Fisch. - In: JOURNAL OF THE AMERICAN CERAMIC SOCIETY. - ISSN 0002-7820. - 96:8(2013), pp. 2583-2592. [10.1111/jace.12411]

High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material

G.D. Gatta
Primo
;
P. Lotti
Secondo
;
M. Merlini;
2013

Abstract

Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) A, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to an high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch– Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0 (b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0 (c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
Settore GEO/06 - Mineralogia
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
B-Mullite_JACS.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 615.3 kB
Formato Adobe PDF
615.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/223002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact