We prove that the weak coupling 2D Hubbard model away from half filling is a Landau Fermi liquid up to exponentially small temperatures. In particular we show that the wave function renormalization is an order 1 constant and essentially temperature independent in the considered range of temperatures and that the interacting Fermi surface is a regular convex curve. This result is obtained by deriving a convergent expansion (which is not a power series) for the two point Schwinger function by Renormalization Group methods and proving at each order suitable power counting improvements due to the convexity of the interacting Fermi surface. Convergence follows from determinant bounds for the fermionic expectations.

Fermi liquid behavior in the 2D Hubbard model at low temperatures / G. Benfatto, A. Giuliani, V. Mastropietro. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 7:5(2006 Aug), pp. 809-898. [10.1007/s00023-006-0270-z]

Fermi liquid behavior in the 2D Hubbard model at low temperatures

V. Mastropietro
Ultimo
2006-08

Abstract

We prove that the weak coupling 2D Hubbard model away from half filling is a Landau Fermi liquid up to exponentially small temperatures. In particular we show that the wave function renormalization is an order 1 constant and essentially temperature independent in the considered range of temperatures and that the interacting Fermi surface is a regular convex curve. This result is obtained by deriving a convergent expansion (which is not a power series) for the two point Schwinger function by Renormalization Group methods and proving at each order suitable power counting improvements due to the convexity of the interacting Fermi surface. Convergence follows from determinant bounds for the fermionic expectations.
Settore MAT/07 - Fisica Matematica
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/222777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact