This article studies a distinguished collection of so-called generalized Heegner cycles in the product of a Kuga-Sato variety with a power of a CM elliptic curve. Its main result is a p-adic analogue of the Gross-Zagier formula which relates the images of generalized Heegner cycles under the p-adic Abel-Jacobi map to the special values of certain p-adic Rankin L-series at critical points that lie outside their range of classical interpolation.

Generalized Heegner cycles and p-adic Rankin L-series / M. Bertolini, H. Darmon, K. Prasanna. - In: DUKE MATHEMATICAL JOURNAL. - ISSN 0012-7094. - 162:6(2013), pp. 1033-1148. [10.1215/00127094-2142056]

Generalized Heegner cycles and p-adic Rankin L-series

M. Bertolini;
2013

Abstract

This article studies a distinguished collection of so-called generalized Heegner cycles in the product of a Kuga-Sato variety with a power of a CM elliptic curve. Its main result is a p-adic analogue of the Gross-Zagier formula which relates the images of generalized Heegner cycles under the p-adic Abel-Jacobi map to the special values of certain p-adic Rankin L-series at critical points that lie outside their range of classical interpolation.
Settore MAT/03 - Geometria
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bertolini_DUKE_GeneralizedHeegner.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 707.86 kB
Formato Adobe PDF
707.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/222251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 106
social impact