This article studies a distinguished collection of so-called generalized Heegner cycles in the product of a Kuga-Sato variety with a power of a CM elliptic curve. Its main result is a p-adic analogue of the Gross-Zagier formula which relates the images of generalized Heegner cycles under the p-adic Abel-Jacobi map to the special values of certain p-adic Rankin L-series at critical points that lie outside their range of classical interpolation.
Generalized Heegner cycles and p-adic Rankin L-series / M. Bertolini, H. Darmon, K. Prasanna. - In: DUKE MATHEMATICAL JOURNAL. - ISSN 0012-7094. - 162:6(2013), pp. 1033-1148. [10.1215/00127094-2142056]
Generalized Heegner cycles and p-adic Rankin L-series
M. Bertolini;
2013
Abstract
This article studies a distinguished collection of so-called generalized Heegner cycles in the product of a Kuga-Sato variety with a power of a CM elliptic curve. Its main result is a p-adic analogue of the Gross-Zagier formula which relates the images of generalized Heegner cycles under the p-adic Abel-Jacobi map to the special values of certain p-adic Rankin L-series at critical points that lie outside their range of classical interpolation.File | Dimensione | Formato | |
---|---|---|---|
Bertolini_DUKE_GeneralizedHeegner.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
707.86 kB
Formato
Adobe PDF
|
707.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.