Macropinocytosis, a form of bulk uptake of fluid and solid cargo into cytoplasmic vacuoles, called macropinosomes, has been studied mostly in relation to antigen presentation. Early membrane traffic events occurring in this process are, however, largely unknown. Using human dendritic cells we show that a marked increase in the rate of macropinocytosis occurs a few minutes after application of two markers (small latex beads or dextran), depends on a slow intracellular Ca2+ concentration ([Ca2+]i) rise that precedes the PI3K-dependent step, and is preceded and accompanied by exocytosis of enlargeosomes compensating in part for the macropinocytic plasma membrane internalization. Unexpectedly, macropinosomes themselves, which share markers with endosomes, undergo Ca2+-dependent exocytosis so that, after ∼20 minutes of continuous bead or dextran uptake, an equilibrium is reached preventing cells from overloading themselves with the organelles. Large [Ca2+]i increases induced by ionomycin trigger rapid (<1 minute) exocytic regurgitation of all macropinosomes, whereas endosomes remain apparently unaffected. We conclude that, in dendritic cells, the rate of macropinocytosis is not constant but increases in a regulated fashion, as previously shown in other cell types. Moreover, macropinosomes are not simple containers that funnel cargo to an endocytic pathway, but unique organelles, distinct from endosomes by their competence for regulated exocytosis and other membrane properties.

Macropinocytosis : regulated coordination of endocytic and exocytic membrane traffic events / S. Falcone, E. Cocucci, P. Podini, T. Kirchhausen, E. Clementi, J. Meldolesi. - In: JOURNAL OF CELL SCIENCE. - ISSN 0021-9533. - 119:119(2006), pp. 4758-4769. [10.1242/jcs.03238]

Macropinocytosis : regulated coordination of endocytic and exocytic membrane traffic events

S. Falcone
Primo
;
E. Clementi
Penultimo
;
2006

Abstract

Macropinocytosis, a form of bulk uptake of fluid and solid cargo into cytoplasmic vacuoles, called macropinosomes, has been studied mostly in relation to antigen presentation. Early membrane traffic events occurring in this process are, however, largely unknown. Using human dendritic cells we show that a marked increase in the rate of macropinocytosis occurs a few minutes after application of two markers (small latex beads or dextran), depends on a slow intracellular Ca2+ concentration ([Ca2+]i) rise that precedes the PI3K-dependent step, and is preceded and accompanied by exocytosis of enlargeosomes compensating in part for the macropinocytic plasma membrane internalization. Unexpectedly, macropinosomes themselves, which share markers with endosomes, undergo Ca2+-dependent exocytosis so that, after ∼20 minutes of continuous bead or dextran uptake, an equilibrium is reached preventing cells from overloading themselves with the organelles. Large [Ca2+]i increases induced by ionomycin trigger rapid (<1 minute) exocytic regurgitation of all macropinosomes, whereas endosomes remain apparently unaffected. We conclude that, in dendritic cells, the rate of macropinocytosis is not constant but increases in a regulated fashion, as previously shown in other cell types. Moreover, macropinosomes are not simple containers that funnel cargo to an endocytic pathway, but unique organelles, distinct from endosomes by their competence for regulated exocytosis and other membrane properties.
Dendritic cells; Enlargeosomes; Macropinocytosis; Membrane traffic; Regulated exocytosis
Settore BIO/14 - Farmacologia
2006
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/22217
Citazioni
  • ???jsp.display-item.citation.pmc??? 95
  • Scopus 209
  • ???jsp.display-item.citation.isi??? 197
social impact