The innate/inflammatory defensive reaction is activated in response to foreign pathogens or signals from damaged tissue. Monocytes/macrophages are key players in the initiation and resolution of inflammation by different activation programmes. Indeed in vivo macrophages can adopt a variety of different phenotypes depending on changes in the tissue microenvironment displaying a continuum of diverse functional states. Moreover peripheral blood monocytes are not a homogeneous population but differ in their phenotypes and functions. In spite of the explosive growth of data, many issues are still open about the phenotypic and functional characterization of monocytes/macrophages, and their role during the homeostasis and in inflammatory conditions. The great majority of the data originates from studies in mice and many immunologists still rely on mouse models despite the evolutionary distance and the differences between the murine and human immune systems. In an attempt to understanding the above issues, and to direct efforts in human immunobiology, the aim of this work was to build and validate a human model of innate/inflammatory defence response in vitro that recapitulates the different phases of the inflammatory reaction, from recruitment and initiation, to development and resolution of inflammation, and re-establishment of homeostasis. The model is based on human primary blood monocytes exposed in culture to sequential changes of microenvironmental conditions (chemokines and cytokines, temperature, bacterial-derived molecules, etc.) for 48 h. The flow cytometrical analysis has shown that the monocyte population used is representative of the monocyte heterogeneity as present in the circulation. All phases of the inflammatory response were profiled by transcriptomic analysis carried out with U133Plus 2.0 GeneChip (Affymetrix). Results were compared and integrated with publicly available transcriptional profiles of monocyte/macrophages, collected and annotated in an ad hoc database. The transcriptomic profiling of some transcriptional and inflammatory-related factors were confirmed and validated by qPCR and by ELISA. The “cluster analysis” revealed broad distinct clusters comprising genes with a clear behaviour that well described the different phases of inflammation. To gain more insight into the biologic role of the genes that are differentially expressed during the inflammatory response, each cluster was subjected to gene set enrichment analysis (GSEA). The gene sets identified by GSEA correlated with the expression profile of different clusters revealed that the inflammatory phase was enriched in inflammatory pathways while the anti-inflammatory phase, as well as the resolution phase, in pathways related to metabolism, cell cycle, and gene rearrangement. Moreover, by comparing the lists of differentially expressed gene between monocytes vs. M1 macrophages and vs. M2 macrophages extracted from the meta-database, it was shown that monocytes treated in vitro according to model resemble M1 during the inflammatory phase and M2 during the resolution. The gene expression of transcriptional and inflammatory-related factors matched with the expression profile obtained with microarrays. In conclusion the microarray data and the kinetical analysis of inflammatory and anti-inflammatory factors validate the proposed in vitro model of the inflammatory response, and allowed describing the time-dependent and coordinated sequence of inflammation-related events.

La reazione di difesa innata/infiammatoria è attivata in risposta a patogeni esterni o a segnali provenienti dal tessuto danneggiato. I monociti/macrofagi hanno un ruolo chiave nell’inizio e risoluzione della infiammazione per mezzo di differenti programmi di attivazione. Infatti i macrofagi possono adottare in vivo una varietà di fenotipi diversi che dipendono dai cambiamenti del microambiente tissutale, esibendo un continuum di stati funzionali diversi. Inoltre i monociti del sangue periferico non sono una popolazione omogenea ma differiscono nei loro fenotipi e funzioni. Nonostante l’esplosivo aumento di informazioni sull’argomento, molte questioni sono ancora aperte riguardo la caratterizzazione fenotipica e funzionale dei monociti/macrofagi, e il loro ruolo durante l’omeostasi e l’infiammazione. La maggior parte dei dati provengono da studi sul topo e molti immunologi fanno ancora affidamento su modelli di topo malgrado la distanza evolutiva e le differenze tra i sistemi immuni murino e umano. Nel tentativo di capire le questioni di cui sopra e di dirigere gli sforzi verso una immunobiologia basata sull’uomo, il fine di questo lavoro è stato quello di costruire e validare un modello umano della risposta di difesa innata/infiammatoria in vitro che ricapitolasse le differenti fasi della reazione infiammatoria, dal reclutamento e inizio, allo sviluppo e risoluzione dell’infiammazione e conseguente ripristino della omeostasi. Il modello è basato su monociti umani primari del sangue esposti in coltura a cambiamenti sequenziali delle condizioni microambientali (chemiochine, citochine, temperatura, molecole di derivazione batterica, ecc.) per 48 h. L’analisi al citofluorimetro ha dimostrato che la popolazione monocitaria utilizzata era rappresentativa dell’eterogeneità monocitaria così come presente nella circolazione sanguigna. Tutte le fasi della risposta infiammatoria sono state definite mediante analisi trascrittomica effettuata con U133Plus 2.0 GeneChip (Affymetrix). I risultati sono stati confrontati e integrati con profili trascrizionali pubblicamente disponibili di monociti/macrofagi, raccolti e annotati in un database ad hoc. Il profilo trascrittomico di alcuni fattori trascrizionali e fattori correlati con l’infiammazione sono stati confermati e validati mediante qPCR e ELISA. La “cluster analysis” ha rivelato cluster ampi e distinti che comprendono geni con un chiaro andamento che ben descrivono le differenti fasi dell’infiammazione. Per ottenere maggiori indicazioni sul ruolo biologico dei geni differenzialmente espressi durante la risposta infammatoria, ciascun cluster è stato analizzato con la GSEA (Gene Set Enrichment Analysis). I set di geni identificati dalla GSEA correlati con il profilo di espressione dei differenti cluster ha rivelato che la fase infiammatoria era arricchita di pathway infiammatorie mentre la fase anti-infiammatoria, così come quella di risoluzione, di pathway relative al metabolismo, al ciclo cellulare e al riarrangiamento genico. Inoltre confrontando le liste dei geni differenzialmente espressi tra monociti e macrofagi M1 e tra monociti e macrofagi M2 estratte dal meta-database, è stato dimostrato che i monociti trattati in vitro secondo il modello mostrano un profilo M1 durante la fase infiammatoria e M2 durante la risoluzione. L’espressione genica dei fattori trascrizionali e di quelli relativi alla infiammazione rispecchiavano il profilo di espressione ottenuto con microarray. In conclusione i dati di microarray e l’analisi cinetica dei fattori infiammatori e anti-infiammatori validano il modello in vitro proposto, modello che consente di descrivere la sequenza tempo-dipendente e coordinata degli eventi relativi alla infiammazione.

DEFINITION OF AN IN VITRO MODEL OF HUMAN MONOCYTE ACTIVATION REPRESENTATIVE OF THE DEFENSIVE INFLAMMATORY RESPONSE / P. Italiani ; tutor: M.S. Clerici; coordinatore: M.S. Clerici ; co-tutor: D. Boraschi. - : . DIPARTIMENTO DI FISIOPATOLOGIA MEDICO-CHIRURGICA E DEI TRAPIANTI, 2013 Feb 07. ((24. ciclo, Anno Accademico 2011. [10.13130/italiani-paola_phd2013-02-07].

DEFINITION OF AN IN VITRO MODEL OF HUMAN MONOCYTE ACTIVATION REPRESENTATIVE OF THE DEFENSIVE INFLAMMATORY RESPONSE

P. Italiani
2013

Abstract

La reazione di difesa innata/infiammatoria è attivata in risposta a patogeni esterni o a segnali provenienti dal tessuto danneggiato. I monociti/macrofagi hanno un ruolo chiave nell’inizio e risoluzione della infiammazione per mezzo di differenti programmi di attivazione. Infatti i macrofagi possono adottare in vivo una varietà di fenotipi diversi che dipendono dai cambiamenti del microambiente tissutale, esibendo un continuum di stati funzionali diversi. Inoltre i monociti del sangue periferico non sono una popolazione omogenea ma differiscono nei loro fenotipi e funzioni. Nonostante l’esplosivo aumento di informazioni sull’argomento, molte questioni sono ancora aperte riguardo la caratterizzazione fenotipica e funzionale dei monociti/macrofagi, e il loro ruolo durante l’omeostasi e l’infiammazione. La maggior parte dei dati provengono da studi sul topo e molti immunologi fanno ancora affidamento su modelli di topo malgrado la distanza evolutiva e le differenze tra i sistemi immuni murino e umano. Nel tentativo di capire le questioni di cui sopra e di dirigere gli sforzi verso una immunobiologia basata sull’uomo, il fine di questo lavoro è stato quello di costruire e validare un modello umano della risposta di difesa innata/infiammatoria in vitro che ricapitolasse le differenti fasi della reazione infiammatoria, dal reclutamento e inizio, allo sviluppo e risoluzione dell’infiammazione e conseguente ripristino della omeostasi. Il modello è basato su monociti umani primari del sangue esposti in coltura a cambiamenti sequenziali delle condizioni microambientali (chemiochine, citochine, temperatura, molecole di derivazione batterica, ecc.) per 48 h. L’analisi al citofluorimetro ha dimostrato che la popolazione monocitaria utilizzata era rappresentativa dell’eterogeneità monocitaria così come presente nella circolazione sanguigna. Tutte le fasi della risposta infiammatoria sono state definite mediante analisi trascrittomica effettuata con U133Plus 2.0 GeneChip (Affymetrix). I risultati sono stati confrontati e integrati con profili trascrizionali pubblicamente disponibili di monociti/macrofagi, raccolti e annotati in un database ad hoc. Il profilo trascrittomico di alcuni fattori trascrizionali e fattori correlati con l’infiammazione sono stati confermati e validati mediante qPCR e ELISA. La “cluster analysis” ha rivelato cluster ampi e distinti che comprendono geni con un chiaro andamento che ben descrivono le differenti fasi dell’infiammazione. Per ottenere maggiori indicazioni sul ruolo biologico dei geni differenzialmente espressi durante la risposta infammatoria, ciascun cluster è stato analizzato con la GSEA (Gene Set Enrichment Analysis). I set di geni identificati dalla GSEA correlati con il profilo di espressione dei differenti cluster ha rivelato che la fase infiammatoria era arricchita di pathway infiammatorie mentre la fase anti-infiammatoria, così come quella di risoluzione, di pathway relative al metabolismo, al ciclo cellulare e al riarrangiamento genico. Inoltre confrontando le liste dei geni differenzialmente espressi tra monociti e macrofagi M1 e tra monociti e macrofagi M2 estratte dal meta-database, è stato dimostrato che i monociti trattati in vitro secondo il modello mostrano un profilo M1 durante la fase infiammatoria e M2 durante la risoluzione. L’espressione genica dei fattori trascrizionali e di quelli relativi alla infiammazione rispecchiavano il profilo di espressione ottenuto con microarray. In conclusione i dati di microarray e l’analisi cinetica dei fattori infiammatori e anti-infiammatori validano il modello in vitro proposto, modello che consente di descrivere la sequenza tempo-dipendente e coordinata degli eventi relativi alla infiammazione.
CLERICI, MARIO SALVATORE
CLERICI, MARIO SALVATORE
The innate/inflammatory defensive reaction is activated in response to foreign pathogens or signals from damaged tissue. Monocytes/macrophages are key players in the initiation and resolution of inflammation by different activation programmes. Indeed in vivo macrophages can adopt a variety of different phenotypes depending on changes in the tissue microenvironment displaying a continuum of diverse functional states. Moreover peripheral blood monocytes are not a homogeneous population but differ in their phenotypes and functions. In spite of the explosive growth of data, many issues are still open about the phenotypic and functional characterization of monocytes/macrophages, and their role during the homeostasis and in inflammatory conditions. The great majority of the data originates from studies in mice and many immunologists still rely on mouse models despite the evolutionary distance and the differences between the murine and human immune systems. In an attempt to understanding the above issues, and to direct efforts in human immunobiology, the aim of this work was to build and validate a human model of innate/inflammatory defence response in vitro that recapitulates the different phases of the inflammatory reaction, from recruitment and initiation, to development and resolution of inflammation, and re-establishment of homeostasis. The model is based on human primary blood monocytes exposed in culture to sequential changes of microenvironmental conditions (chemokines and cytokines, temperature, bacterial-derived molecules, etc.) for 48 h. The flow cytometrical analysis has shown that the monocyte population used is representative of the monocyte heterogeneity as present in the circulation. All phases of the inflammatory response were profiled by transcriptomic analysis carried out with U133Plus 2.0 GeneChip (Affymetrix). Results were compared and integrated with publicly available transcriptional profiles of monocyte/macrophages, collected and annotated in an ad hoc database. The transcriptomic profiling of some transcriptional and inflammatory-related factors were confirmed and validated by qPCR and by ELISA. The “cluster analysis” revealed broad distinct clusters comprising genes with a clear behaviour that well described the different phases of inflammation. To gain more insight into the biologic role of the genes that are differentially expressed during the inflammatory response, each cluster was subjected to gene set enrichment analysis (GSEA). The gene sets identified by GSEA correlated with the expression profile of different clusters revealed that the inflammatory phase was enriched in inflammatory pathways while the anti-inflammatory phase, as well as the resolution phase, in pathways related to metabolism, cell cycle, and gene rearrangement. Moreover, by comparing the lists of differentially expressed gene between monocytes vs. M1 macrophages and vs. M2 macrophages extracted from the meta-database, it was shown that monocytes treated in vitro according to model resemble M1 during the inflammatory phase and M2 during the resolution. The gene expression of transcriptional and inflammatory-related factors matched with the expression profile obtained with microarrays. In conclusion the microarray data and the kinetical analysis of inflammatory and anti-inflammatory factors validate the proposed in vitro model of the inflammatory response, and allowed describing the time-dependent and coordinated sequence of inflammation-related events.
inflammation ; monocytes ; macrophage polarization ; transcriptome
Settore BIO/11 - Biologia Molecolare
DEFINITION OF AN IN VITRO MODEL OF HUMAN MONOCYTE ACTIVATION REPRESENTATIVE OF THE DEFENSIVE INFLAMMATORY RESPONSE / P. Italiani ; tutor: M.S. Clerici; coordinatore: M.S. Clerici ; co-tutor: D. Boraschi. - : . DIPARTIMENTO DI FISIOPATOLOGIA MEDICO-CHIRURGICA E DEI TRAPIANTI, 2013 Feb 07. ((24. ciclo, Anno Accademico 2011. [10.13130/italiani-paola_phd2013-02-07].
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R08145.pdf

embargo fino al 02/07/2013

Tipologia: Tesi di dottorato completa
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/217442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact