Although glial cells have been traditionally viewed as supportive partners of neurons, studies of the last 20 years demonstrate that astrocytes possess functional receptors for neurotransmitters and other signaling molecules and respond to their stimulation via release of chemical transmitters (called gliotransmitters) such as glutamate, ATP, and d-serine. Notably, astrocytes react to synaptically released neurotransmitters with intracellular calcium ([Ca2+]i) elevations, which result in the release of glutamate via regulated exocytosis and possibly other mechanisms. These findings have led to a new concept of neuron–glia intercommunication where astrocytes play an unsuspected dynamic role by integrating neuronal inputs and modulating synaptic activity. The additional discovery that glutamate release from astrocytes is controlled by molecules linked to inflammatory reactions, such as the cytokine tumor necrosis factor-α (TNF-α) and prostaglandins, suggests that glia-to-neuron signaling may be sensitive to changes in production of these mediators in pathological conditions. Indeed, a local, parenchymal brain inflammatory reaction (neuroinflammation) characterized by astrocytic and microglial activation has been reported in several neurodegenerative disorders, including Alzheimer's disease and AIDS dementia complex. This transition to a reactive state may be accompanied by a disruption of the cross talk normally occurring between astrocytes and neurons and so contribute to disease development. The findings reported in this chapter suggest that a better comprehension of the glutamatergic interplay between neurons and glia may provide information about normal brain function and also highlight possible molecular targets for therapeutic interventions in pathology.

Glutamate release from astrocytes in physiological conditions and in neurodegenerative disorders characterized by neuroinflammation / S. Vesce, D. Rossi, L. Brambilla, A. Volterra - In: The neuroinflammation in neuronal death and repair / [a cura di] G. Bagetta, M.T. Corasaniti, S.A. Lipton. - Amsterdam : Elsevier, 2007. - ISBN 9780123739896. - pp. 57-71 [10.1016/S0074-7742(07)82003-4]

Glutamate release from astrocytes in physiological conditions and in neurodegenerative disorders characterized by neuroinflammation

D. Rossi
Secondo
;
L. Brambilla
Penultimo
;
A. Volterra
Ultimo
2007

Abstract

Although glial cells have been traditionally viewed as supportive partners of neurons, studies of the last 20 years demonstrate that astrocytes possess functional receptors for neurotransmitters and other signaling molecules and respond to their stimulation via release of chemical transmitters (called gliotransmitters) such as glutamate, ATP, and d-serine. Notably, astrocytes react to synaptically released neurotransmitters with intracellular calcium ([Ca2+]i) elevations, which result in the release of glutamate via regulated exocytosis and possibly other mechanisms. These findings have led to a new concept of neuron–glia intercommunication where astrocytes play an unsuspected dynamic role by integrating neuronal inputs and modulating synaptic activity. The additional discovery that glutamate release from astrocytes is controlled by molecules linked to inflammatory reactions, such as the cytokine tumor necrosis factor-α (TNF-α) and prostaglandins, suggests that glia-to-neuron signaling may be sensitive to changes in production of these mediators in pathological conditions. Indeed, a local, parenchymal brain inflammatory reaction (neuroinflammation) characterized by astrocytic and microglial activation has been reported in several neurodegenerative disorders, including Alzheimer's disease and AIDS dementia complex. This transition to a reactive state may be accompanied by a disruption of the cross talk normally occurring between astrocytes and neurons and so contribute to disease development. The findings reported in this chapter suggest that a better comprehension of the glutamatergic interplay between neurons and glia may provide information about normal brain function and also highlight possible molecular targets for therapeutic interventions in pathology.
Settore BIO/14 - Farmacologia
2007
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/216146
Citazioni
  • ???jsp.display-item.citation.pmc??? 52
  • Scopus 130
  • ???jsp.display-item.citation.isi??? 119
social impact