In this work, SnO2 + IrO2 mixed oxides are studied as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media by means of voltammetric techniques under controlled mass transfer conditions thanks to the use of rotating (ring) disk electrodes (RDE/RRDE). The oxides, prepared by sol-gel methodology, are supported on the disk electrodes using a thin layer of anionic exchange polymer as gluing agent. The amount of deposited polymer was optimized to avoid any limitation due to the diffusion of reactant/products across the film thickness. The mixed oxides were prepared at the following mole fractions of IrO2: {Mathematical expression} = 0.15, 0.31, 0.55, 0.73, and 1. The role of composition was studied in terms of the reaction pathways and the relevant fraction of H2O2 production, together with the potentials of the onset of ORR. The fraction of sites able to give proton/hydroxyl and electron transfers is also determined and discussed. The results point to the best performance of low-Ir containing mixtures and to their low sensitivity to the presence of methanol, a key feature in the case of crossover in alkaline direct alcohol fuel cells.

IrO2-SnO2 mixtures as electrocatalysts for the oxygen reduction reaction in alkaline media / C. Locatelli, A. Minguzzi, A. Vertova, S. Rondinini. - In: JOURNAL OF APPLIED ELECTROCHEMISTRY. - ISSN 0021-891X. - 43:2(2013), pp. 171-179.

IrO2-SnO2 mixtures as electrocatalysts for the oxygen reduction reaction in alkaline media

C. Locatelli;A. Minguzzi
;
A. Vertova;S. Rondinini
2013

Abstract

In this work, SnO2 + IrO2 mixed oxides are studied as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media by means of voltammetric techniques under controlled mass transfer conditions thanks to the use of rotating (ring) disk electrodes (RDE/RRDE). The oxides, prepared by sol-gel methodology, are supported on the disk electrodes using a thin layer of anionic exchange polymer as gluing agent. The amount of deposited polymer was optimized to avoid any limitation due to the diffusion of reactant/products across the film thickness. The mixed oxides were prepared at the following mole fractions of IrO2: {Mathematical expression} = 0.15, 0.31, 0.55, 0.73, and 1. The role of composition was studied in terms of the reaction pathways and the relevant fraction of H2O2 production, together with the potentials of the onset of ORR. The fraction of sites able to give proton/hydroxyl and electron transfers is also determined and discussed. The results point to the best performance of low-Ir containing mixtures and to their low sensitivity to the presence of methanol, a key feature in the case of crossover in alkaline direct alcohol fuel cells.
Alkaline fuel cells; Direct alcohol fuel cells; Iridium tin oxide; Oxygen reduction; Rotating ring disk electrode
Settore CHIM/02 - Chimica Fisica
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
47_JAE.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/215448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact