Photosystem I (PSI) of higher plants contains 18 subunits. Using Arabidopsis En insertion lines, we have isolated knockout alleles of the genes psaG,psaH2, and psaK, which code for PSI-G, -H, and -K. In the mutants psak-1 andpsag-1.4, complete loss of PSI-K and -G, respectively, was confirmed, whereas the residual H level in psah2-1.4is due to a second gene encoding PSI-H, psaH1. Double mutants, lacking PSI-G, and also -K, or a fraction of -H, together with the three single mutants were characterized for their growth phenotypes and PSI polypeptide composition. In general, the loss of each subunit has secondary, in some cases additive, effects on the abundance of other PSI polypeptides, such as D, E, H, L, N, and the light-harvesting complex I proteins Lhca2 and 3. In the G-less mutantpsag-1.4, the variation in PSI composition suggests that PSI-G stabilizes the PSI-core. Levels of light-harvesting complex I proteins in plants, which lack simultaneously PSI-G and -K, indicate that PSI subunits other than G and K can also bind Lhca2 and 3. In the same single and double mutants, psag-1.4,psak-1, psah2-1.4,psag-1.4/psah2-1.4, andpsag-1.4/psak-1 photosynthetic electron flow and excitation energy quenching were analyzed to address the roles of the various subunits in P700 reduction (mediated by PSI-F and -N) and oxidation (PSI-E), and state transitions (PSI-H). Based on the results, we also suggest for PSI-K a role in state transitions.

Single and Double Knockouts of the Genes for Photosystem I Subunits G, K, and H of Arabidopsis. Effects on Photosystem I Composition, Photosynthetic Electron Flow, and State Transitions / C. Varotto, P. Pesaresi, P. Jahns, A. Leßnick, M. Tizzano, F. Schiavon, F. Salamini, D. Leister. - In: PLANT PHYSIOLOGY. - ISSN 0032-0889. - 129:2(2002 May), pp. 616-624.

Single and Double Knockouts of the Genes for Photosystem I Subunits G, K, and H of Arabidopsis. Effects on Photosystem I Composition, Photosynthetic Electron Flow, and State Transitions

P. Pesaresi
Secondo
;
2002

Abstract

Photosystem I (PSI) of higher plants contains 18 subunits. Using Arabidopsis En insertion lines, we have isolated knockout alleles of the genes psaG,psaH2, and psaK, which code for PSI-G, -H, and -K. In the mutants psak-1 andpsag-1.4, complete loss of PSI-K and -G, respectively, was confirmed, whereas the residual H level in psah2-1.4is due to a second gene encoding PSI-H, psaH1. Double mutants, lacking PSI-G, and also -K, or a fraction of -H, together with the three single mutants were characterized for their growth phenotypes and PSI polypeptide composition. In general, the loss of each subunit has secondary, in some cases additive, effects on the abundance of other PSI polypeptides, such as D, E, H, L, N, and the light-harvesting complex I proteins Lhca2 and 3. In the G-less mutantpsag-1.4, the variation in PSI composition suggests that PSI-G stabilizes the PSI-core. Levels of light-harvesting complex I proteins in plants, which lack simultaneously PSI-G and -K, indicate that PSI subunits other than G and K can also bind Lhca2 and 3. In the same single and double mutants, psag-1.4,psak-1, psah2-1.4,psag-1.4/psah2-1.4, andpsag-1.4/psak-1 photosynthetic electron flow and excitation energy quenching were analyzed to address the roles of the various subunits in P700 reduction (mediated by PSI-F and -N) and oxidation (PSI-E), and state transitions (PSI-H). Based on the results, we also suggest for PSI-K a role in state transitions.
Settore BIO/18 - Genetica
Settore BIO/04 - Fisiologia Vegetale
mag-2002
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/211615
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 62
social impact