We study an optimal stopping problem for a stochastic differential equation with delay driven by a L,vy noise. Approaching the problem by its infinite-dimensional representation, we derive conditions yielding an explicit solution to the problem. Applications to the American put option problem are shown.

Optimal stopping of stochastic differential equations with delay driven by Levy Noise / S. Federico, B.K. Oksendal. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - 34:2(2011), pp. 181-198. [10.1007/s11118-010-9187-8]

Optimal stopping of stochastic differential equations with delay driven by Levy Noise

S. Federico
Primo
;
2011

Abstract

We study an optimal stopping problem for a stochastic differential equation with delay driven by a L,vy noise. Approaching the problem by its infinite-dimensional representation, we derive conditions yielding an explicit solution to the problem. Applications to the American put option problem are shown.
Optimal stopping ; stochastic delay equations ; linear evolution equation ; free boundary problem
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Settore MAT/06 - Probabilita' e Statistica Matematica
2011
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/211373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact