We study a class of optimal control problems with state constraints, where the state equation is a differential equation with delays. This class includes some problems arising in economics, in particular, the so-called models with time to build; see [P. K. Asea and P. J. Zak, J. Econom. Dynam. Control, 23 (1999), pp. 1155-1175; M. Bambi, J. Econom. Dynam. Control, 32 (2008), pp. 1015-1040; F. E. Kydland and E. C. Prescott, Econometrica, 50 (1982), pp. 1345-1370]. We embed the problem in a suitable Hilbert space H and consider the associated Hamilton-Jacobi-Bellman (HJB) equation. This kind of infinite dimensional HJB equation has not been previously studied and is difficult due to the presence of state constraints and the lack of smoothing properties of the state equation. Our main result on the regularity of solutions to such an HJB equation seems to be entirely new. More precisely, we prove that the value function is continuous in a sufficiently big open set of H, that it solves in the viscosity sense the associated HJB equation, and that it has continuous classical derivative in the direction of the "present." This regularity result is the starting point to define a feedback map in the classical sense, which gives rise to a candidate optimal feedback strategy.

HJB equations for the optimal control of differential equations with delays and state constraints, I : regularity of viscosity solutions / S. Federico, B. Goldys, F. Gozzi. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - 48:8(2010), pp. 4910-4937. [10.1137/09076742X]

HJB equations for the optimal control of differential equations with delays and state constraints, I : regularity of viscosity solutions

S. Federico
Primo
;
2010

Abstract

We study a class of optimal control problems with state constraints, where the state equation is a differential equation with delays. This class includes some problems arising in economics, in particular, the so-called models with time to build; see [P. K. Asea and P. J. Zak, J. Econom. Dynam. Control, 23 (1999), pp. 1155-1175; M. Bambi, J. Econom. Dynam. Control, 32 (2008), pp. 1015-1040; F. E. Kydland and E. C. Prescott, Econometrica, 50 (1982), pp. 1345-1370]. We embed the problem in a suitable Hilbert space H and consider the associated Hamilton-Jacobi-Bellman (HJB) equation. This kind of infinite dimensional HJB equation has not been previously studied and is difficult due to the presence of state constraints and the lack of smoothing properties of the state equation. Our main result on the regularity of solutions to such an HJB equation seems to be entirely new. More precisely, we prove that the value function is continuous in a sufficiently big open set of H, that it solves in the viscosity sense the associated HJB equation, and that it has continuous classical derivative in the direction of the "present." This regularity result is the starting point to define a feedback map in the classical sense, which gives rise to a candidate optimal feedback strategy.
Hamilton-Jacobi-Bellman equation ; optimal control ; delay equations ; viscosity solutions ; regularity
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Settore MAT/05 - Analisi Matematica
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/211357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 31
social impact