Following up on our recent study of ultrafast charge separation at oligothiophene-fullerene interfaces [H. Tamura, I. Burghardt, and M. Tsukada, J. Phys. Chem. C 115, 10205 (2011)10.1021/jp203174e], we present here a detailed quantum dynamical perspective on the charge transfer process. To this end, electron-phonon coupling is included non-perturbatively, by an explicit quantum dynamical treatment using the multi-configuration time-dependent Hartree (MCTDH) method. Based upon a distribution of electron-phonon couplings determined from electronic structure studies, a spectral density is constructed and employed to parametrize a linear vibronic coupling Hamiltonian. The diabatic coupling is found to depend noticeably on the inter-fragment distance, whose effect on the dynamics is here investigated. MCTDH calculations of the nonadiabatic transfer dynamics are carried out for the two most relevant electronic states and 60 phonon modes. The electron transfer process is found to be ultrafast and mediated by electronic coherence, resulting in characteristic oscillatory features during a period of about 100 fs.

Quantum dynamics of ultrafast charge transfer at an oligothiophene-fullerene heterojunction / H. Tamura, R. Martinazzo, M. Ruckenbauer, I. Burghardt. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 137:22(2012 Sep), p. 22A540.22A540. [10.1063/1.4751486]

Quantum dynamics of ultrafast charge transfer at an oligothiophene-fullerene heterojunction

R. Martinazzo
Secondo
;
2012

Abstract

Following up on our recent study of ultrafast charge separation at oligothiophene-fullerene interfaces [H. Tamura, I. Burghardt, and M. Tsukada, J. Phys. Chem. C 115, 10205 (2011)10.1021/jp203174e], we present here a detailed quantum dynamical perspective on the charge transfer process. To this end, electron-phonon coupling is included non-perturbatively, by an explicit quantum dynamical treatment using the multi-configuration time-dependent Hartree (MCTDH) method. Based upon a distribution of electron-phonon couplings determined from electronic structure studies, a spectral density is constructed and employed to parametrize a linear vibronic coupling Hamiltonian. The diabatic coupling is found to depend noticeably on the inter-fragment distance, whose effect on the dynamics is here investigated. MCTDH calculations of the nonadiabatic transfer dynamics are carried out for the two most relevant electronic states and 60 phonon modes. The electron transfer process is found to be ultrafast and mediated by electronic coherence, resulting in characteristic oscillatory features during a period of about 100 fs.
band structure ; charge transfer states ; electron-phonon interactions ; fullerenes ; interface phonons ; organic compounds ; vibronic states
Settore CHIM/02 - Chimica Fisica
set-2012
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/210523
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 87
social impact